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Abstract — Natural language processing (NLP) may 

be defined as the automatic or semi-automatic 

processing of human language. The term ‘NLP’ is 

sometimes considered to be a process which excludes 

information retrieval and sometimes even machine 

translation. Sometimes NLP is contrasted with 

‘computational linguistics’. The alternative terms of 

NLP are often preferred, like ‘Language Technology’ 

or ‘Language Engineering’. Language is often used in 

contrast with speech (e.g., Speech and Language 

Technology). In the present paper the authors refer 

the term NLP in much more broader sense. NLP is 

related to linguistics and also has links to research in 

cognitive science, psychology, philosophy and 

mathematical logic. In computer science, it relates to 

formal language theory, compiler techniques, theorem 

proving, machine learning and human-computer 

interaction and also to AI. In the present paper, the 

authors have given an introduction to natural 

language processing and then application of theory of 

finite state automation. The basic principles of Finite 

State Automata Theory including DFAs and NFAs 

are also discussed and finally applications of FSM in 

NLP. 
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1 INTRODUCTION TO NATURAL LANGUAGE   

PROCESSING  
Natural Language Processing (NLP) is a field of 

computer science, artificial intelligence and 

computational linguistics concerned with the interactions 
between computers and human (natural) languages. NLP 

involves the natural language understanding, that is 

enabling computers to derive meaning from human or 

natural language input, and others involve natural 

language generation. [3] 

NLP is a theoretically motivated range of computational 

techniques for analyzing and representing naturally 

occurring texts at one or more levels of linguistic analysis 

for the purpose of achieving human like language 

processing for a range of tasks or applications. [4] 

The goal of NLP is to accomplish human-like language 

processing. NLP has made serious inroads into jobs like: 

1) Paraphrase an input text. 
2) Translate the text into another language. 

3) Answer questions about the contents of the text. 

There are more practical goals for NLP, mostly related to 

the certain applications for which it is being applied. As 

for example, an NLP based Information Retrieval System 

has the goal of providing more accurate and complete 

information in response to a user‟s actual information 

need. The goal of NLP here is to represent the real 

meaning and intent of the user‟s query, which can be 

expressed as naturally in everyday language as if they 

were conversing with a reference librarian. All the 
contents of the documents that are being searched will be 

represented at every level of meaning so that a correct 

match between the requirement and response can be 

discovered, no matter how either is represented in their 

surface form. [4]   

The lineage of NLP is mixed. Main contributors to the 

discipline and practice of NLP are:  

1) Linguistics-focuses on formal, structural models of 

language and the discovery of language universals. 

2) ComputerScience-is concerned with developing 

internal representations of data and efficient 
processing of these structures. 

3) CognitivePsychology-looks at language usage as a 

window into human cognitive processes, and has 

the goal of modeling the usage of language in a 

psychologically feasible way. 
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The central point of any NLP job is an important issue of 

natural language understanding. The method of creating 

computer programs that understand natural language 

includes three major problems-the first one relates to 

thought process, the second one to the representation and 

meaning of linguistic input, and the third one to the world 
knowledge. Thus an NLP system may start at the “word” 

level-to determine the morphological structure, nature 

etc. of the word, and then move on to the sentence level-

to determine the word order, grammar, meaning of the 

entire sentence, etc.-and then to the context and the 

overall environment or domain. A given word or a 

sentence may have a particular meaning or connotation in 

a given context or domain, and may be related to many 

different other words and/or sentences in the given 

context. [4]. 

 

2 ISSUES IN NATURAL LANGUAGE 

PROCESSING  
The tasks taking place within an NLP system generally 

occurs in certain levels.  

 Phonology deals with interpretation of speech 

sounds within and across the word  

 Morphology includes componential nature of the 

words which are composed of morphemes (smallest 

units of meaning); 

 Lexical level includes both humans and NLP 

systems determining the meaning of individual 

words; 

 Syntactic level deals with the analysis of the words 
in a sentence in order to discover the grammatical 

structure of the sentence 

 Semantic level determines feasible meaning of a 

sentence by focusing on the word-level meanings‟ 

interactions within the sentence.  

 Other levels such as Disclosure, Pragmatic deals 

with longer lengths of textual matter and more 

intricate meaning deciphering. [4] 

 

3 INTRODUCTION TO FINITE STATE 

AUTOMATA 
Automata theory is the study of abstract computing 

devices or machines. During the time when computers 

had still not developed and use of computers was still not 
widespread, Allen Turing studied an abstract machine 

that had all the capabilities of today‟s computers, at least 

as far as in what they could compute. Turing wanted to 

explain clearly what such a machine was capable of 

doing or not doing. Later on, many simpler kinds of 

machines, which we today call finite automata, were 

developed. [2] 

Finite State Automata (FSA) and Finite State 

Transducers (FST) are Finite State devices which have 

been used widely in the field of Computer Science since 

the beginning of Computer Science period. These Finite 
State devices used in a applications ranging from  

compilation of programs to hardware modeling or 

database management and other domains like speech 

processing, Optical Character Recognition (OCR), 

matching  and recognition of patterns and many more. 

Recently many mathematical and algorithmic results 

have shown that Finite State technologies such as FSA 

and FST have great impact on the representation of 
electronic dictionaries and Natural Language Processing 

(NLP) which as a result is leading to a new language 

technology in academic and industrial research. [1] 

 

Both FSA and FST operate on sets of strings (alphabets) 

which are actually sets of sequences of symbols or 

characters. These characters are either finite for example 

the English alphabet or infinite like the Real Numbers. A 

string is a finite sequence of symbols. „Free monoid’  

is the set of strings which are built on an alphabet ∑. [1] 
 

Finite automata are a useful model for many important 

kinds of hardware and software. Some of the important 

applications of the Finite State Automata are in [1]: 

i) Switching theory 

ii) Pattern recognition 

iii) Speech processing 

iv) Optical character recognition 

v) Data compression 

vi) Compiler theory 

Many systems such as those listed above can be supposed 

to be in one of a finite number of “states”. A state 
remembers the relevant portion of the system‟s history. 

The entire history cannot be remembered since there are 

only a finite number of states. Hence, one of the “Eq. 

important design issues for such systems to remember 

what is important and to forget the unimportant parts. 

Since there are a finite number of states, the system can 

be implemented using a fixed set of resources.  

The simplest example that one could give of a FSA is an 

ON/OFF switch [2]. Such a device would remember 

when it is in the ON state and when it is in the OFF state. 

Depending on the state of the switch, the effect of a 
button push would be different.   If the switch is in ON 

state, then it would go to an OFF state and vice-versa. 

Such a switch could be modeled as in the figure below: 

 
Fig. 1. A FSA for a switch 

 

The states are represented by circles. In this example, the 

states have been named as ON and OFF. The arcs are 
labeled with the inputs. One of the states is the “start” 

state and is identified by an arrow as shown in the figure.  

One of the crucial distinctions among classes of finite 

automata is whether that control is deterministic or non-
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deterministic. Deterministic Automata cannot be in more 

than one state at any given point in time whereas Non-

deterministic Automata can be.  

3.1 Deterministic Finite Automata 

3.1.1 What is DFA? 

A Deterministic Finite Automata is a Finite State 
Machine that accepts or rejects finite strings of symbols 

and only produces a unique computation of the 

automaton for each input string. The term 

“Deterministic” refers to the uniqueness of the 

computation.  

 

 
 Fig. 2. An example DFA 

 

The above Fig. 2 illustrates a DFA using a state diagram. 

There are three states in the DFA, namely S0, S1 and S2. 

S0 is the start state. The DFA accepts strings of the form 
011, 01001, 010101, 00101101, etc. Whenever the DFA 

reads a symbol, it jumps deterministically from one state 

to the other, depending on the transition function. For 

example δ(S0,1)=S1, so whenever the DFA reads the 

symbol 1 and it is in state S0 at that moment, it will jump 

to state S1.  The DFA has a start state S0, represented in 

the diagram by an arrow and a set of accepting states. In 

this case, there is only one accepting state, which is S0.  

A DFA is defined as an abstract mathematical concept 

but it is widely implemented in hardware and software 

terms owing to its deterministic nature. For example, a 

DFA can model software that decides whether or not 
online user-input such as email addresses are valid. 

3.1.2 Formal Definition of a DFA 

A Deterministic Finite Automata (DFA) M is a 5-tuple  

1) A finite set of states, denoted by Q. 

2) A finite set of input symbols, denoted by ∑. 

3) δ is the transition function that takes a state in Q 

and an input symbol in ∑ as arguments and returns 

a subset of Q.  

4) A start state ( . 

5) A set of final states F such that  
Let w = a1a2 ... an be a string over the alphabet Σ. The 

automaton M accepts the string w if a sequence of states, 

r0, r1, ... , rn, exists in Q with the following conditions: 

1) r0 = q0 

2) ri+1 = δ(ri, ai+1), for i = 0, ..., n−1 

3) rn∈F. 

The above conditions mean that the DFA starts form the 

initial state q0. Then it moves from one state to another 

depending on the transition function. The DFA is said to 

accept a string if it halts at one of the accepting states. 
Otherwise we say that the DFA does not accept the 

string. The set of string that the DFA M accepts is called 

the language recognized by M and it is denoted by L(M). 

3.1.3 An example of  a DFA 

Let us take the example of a DFA that accepts all and 

only the strings of 0s and 1s that have the sequence 01 

somewhere in the string [2]. We can write this language 

L as: 

{ w | w is of the form x01y for some strings x and y 

consisting of 0s and 1s only } 
Examples of strings in this language include 01, 11010, 

100011, etc. examples of strings not in the language 

include , 0, and 111000. We  can define the automaton 

that accepts this language as follows:  

 
Fig. 3. DFA  

 

3.2 Non-Deterministic Finite Automata 

3.2.1 What is NDFA? 

A “Non-deterministic” finite automaton (NFA) can be in 

several states at given point of time. The ability is often 

expressed as an ability to “guess” something about its 
input [2].  For example, when the automaton is searching 

for certain sequences of characters in a long string, it 

would help to make a guess that it is at the beginning of 

one of those strings and use a sequence of states to do 

nothing but check that the string appears , character by 

character. It can be shown that a language accepted by an 

NFA is also acceptable to some DFA. We can convert 

any NFA to an equivalent DFA using the subset 

construction algorithm. Like DFAs, NFAs also accept 

only regular languages.  

 
Fig. 4. NDFA 

 
The above figure illustrates an NFA using state diagram. 

There are two states in the NFA, p and q. p is the start 

state and q is the final state. As can be seen from the 

figure, this automata is non-deterministic in the sense that 

, that is, on encountering the input 

symbol 1, if the NFA is in state p, it can go to either p or 

q.  

3.2.2 Formal Definition of a NDFA 

A Non-Deterministic Finite AutomataA is a 5-tuple 

(Q,∑,δ,q0,F) where 

1) A finite set of states, denoted by Q. 
2) A finite set of input symbols, denoted by ∑. 

3) A transition function, that takes as a state and an 

input symbol as arguments and returns a state. The 

transition function is commonly denoted by δ. If q is 

a state and a is an input symbol, then δ(q,a) is that 

state p such that here is an arc labeled a from q to p. 

4) A start state ( . 

5) A set of final states F such that  
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Let w = a1a2 ... an be a string over the alphabet Σ. The 

automaton A accepts the string w if a sequence of states, 

r0, r1, ... , rn, exists in Q with the following conditions: 

1) r0 = q0 

2) ri+1 = δ(ri, ai+1), for i = 0, ..., n−1 

3) rn∈F. 

3.2.3 An example of an NDFA 

Let us take the example of an NFA which accepts exactly 

those strings that have any number of either the symbols 

a or b in the starting and always end with the string abb.  

Examples of such strings include aabb, babb, aabbabb 

etc. The NFA has been shown below: 

 
Fig. 5. An example of NFA 

 

3.3 Finite State Transducers 

3.3.1 What is an FST? 

Finite-State Transducers can be conceptually thought of 
as defining a class of graphs, a class of relations on 

strings, or a class of transductions on strings [1]. A finite 

state transducer (FST) is a finite state machine with two 

tapes: an input tape and an output tape. This contrasts 

with an ordinary finite state automaton (or finite state 

acceptor), which has a single tape. The two tapes of a 

transducer are typically viewed as an input tape and an 

output tape. On this view, a transducer is said to 

transduce (i.e., translate) the contents of its input tape to 

its output tape, by accepting a string on its input tape and 

generating another string on its output tape. It may do so 
non-deterministically and it may produce more than one 

output for each input string. A transducer may also 

produce no output for a given input string, in which case 

it is said to reject the input. In general, a transducer 

computes a relation between two formal languages.[6] 

Each string-to-string finite state transducer relates the 

input alphabet Σ to the output alphabet Γ. Relations R on 

Σ*×Γ* that can be implemented as finite state transducers 

are called rational relations. Rational relations that are 

partial functions, i.e. that relate every input string from 

Σ* to at most one Γ*, are called rational functions.[6] 
Finite-state transducers are often used for phonological 

and morphological analysis in natural language 

processing research and applications.[6] 

3.3.2  Formal Definition of an FST  

A Finite-State Transducer T is a 6-tuple  

where:  

  is a finite set of states 

 is finite set, called the input alphabet 

 is finite set, called the output alphabet 

 is the initial state. 

 is the set of final states. 

  is the set of transition 
relations. 

We can view  as a labeled directed graph, known 

as the Transition Graph of T. The set of vertices is Q and 

 means that there is a labeled edge going 

from vertex q to vertex r. Also, a is the input label and b 
is the output label of that edge. [6] 

3.3.3 Some other definitions 

 Path: An Extended Transition Function  is 

defined as the smallest set such that : 

  

   and  

 
 

The extended transition relation is essentially the 

reflexive transitive closure of the transition graph 

that has been augmented to take edge labels into 

account. The elements of are known as paths. 

The edge labels of a path are obtained by 

concatenating the edge labels of its constituent 

transitions in order. A successful path is a path that 

starts from an initial state and ends in a final state.  

 Underlying finite-state automaton: If 

T=   is a FST, then its underlying 

FSA  is defined as follows: 

 

 

 Rational Functions: A regular (or rational) 

relation over the alphabets Σ, Γ is formed from a 

finite combination of the following rules:  

i) ∀ (x, y) ∈ Σ ∪ {ε} × Γ ∪ {ε}  

ii) ∅ is a regular relation  

iii) If R, S are regular relations, then so are R ◦ S, R ∪S, 

and R∗ 

iv) Each string-to-string finite state transducer relates 

the input alphabet Σ to the output alphabet Γ. 

Relations R on Σ*×Γ* that can be implemented as 
finite state transducers are called rational relations. 

Rational relations that are partial functions, i.e. that 

relate every input string from Σ* to at most one Γ*, 

are called rational functions. 

 

4 SOME APPLICATIONS OF FINITE STATE 

AUTOMATA AND DISCUSSIONS THE 

SUBJECT 
1) This work which was published in Introduction to 

Finite-State Devices in Natural Language 

Processing June 1996, MITSUBISHI ELECTRIC 

RESEARCH LABORATORIES. The authors have 

tried to show how the closure property of FSA 

exhibits their use, uniformity and flexibility on 

constraints operating on a local context. In these 

examples the input string, the lexicon, the local 

syntactic rules are all represented as Finite State 

Automata and the combination of rules 

corresponding to operations on FSA produce other 

FSA. We give an overview of the method here. 
Interested readers can refer to the published work 

for more details.  
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Let us assume that we have to analyze the below given 

statement: 

He hopes that this works 

i) If we look up in the dictionary we can easily 

identify that the word „He‟ is a pronoun, „hopes‟ is a 

noun or a verb, „that‟ is a determiner or a pronoun 
or a conjunction, „this‟ is a determiner or a pronoun 

and the word „works‟ is a noun or a verb. These 

kinds of morphological information that are already 

encoded within a dictionary are easily represented 

by a Finite State Automata in Fig. 6 below: 

 
Fig. 6 

 

ii) The automaton of the word „that‟ could be easily 

done since the dictionary lookup gave us such 

representations. Similarly the morphological 

information of all the other words in the sentence 

that we took to analyze can be also represented by 

individual automaton for each word. Hence the 
morphological analysis of the whole input sentence 

can also be represented by a FSA as shown in Fig. 7 

below. As we can see that the dictionary and the 

morphological analysis of a sentence can be 

represented by a FSA, the morphological 

disambiguating rules can also be represented by a 

FSA. 

 

 

Fig. 7 

 

iii) If we have to encode a negative rule stating the 

partial analysis “that Det this Det” is not possible, 

then the negative constraint can be encoded by the 

automaton as shown in Fig. 8 below. 

 
Fig. 8 

iv) We see that applying the constraint of Fig. 8 to the 

Fig. 7 gives the automaton shown in Fig. 9 . 

 

 

 

 

 

 
Fig. 9 

 

2) FSTs are particularly useful in the implementation of 
certain natural language processing tasks [8]. Context-

sensitive rewriting rules (e.g. ax → bx) are adequate 

for implementing certain computational linguistic 

tasks such as morphological stemming and part-of-

speech tagging. Such rewrite rules are also 

computationally equivalent to finite-state transducers, 

providing a unique path for optimizing rule based 

systems. 

Take, for example, the following set of ordered 

context-sensitive rules: 

 change ‘c’ to ‘b’ if followed by ‘x’                                             

cx → bx 
 change ‘a’ to ‘b’ if preceded by ‘rs’                                           

rsa → rsb 
 change ‘b’ to ‘a’ if preceded by ‘rs’ and followed 

by ‘xy’        rsbxy → rsaxy 

Given the following string on the input tape: 

rsaxyrscxy 

the application of the given rule set would proceed as 
follows: 

 rsaxyrscxy→rsaxyrsbxy 

 rsaxyrsbxy→rsbxyrsbxy 

 rsbxyrsbxy → rsaxyrsaxy 
The time required to apply a sequence of context-

sensitive rules is dependent upon the number of rules, the 

size of the context window, and the number of characters 

in the input string. The inefficiencies  in such an 

implementation are highlighted in this example by the 

multi-step transformation required to translate „c„ to „b„ 

then „b„ to „a„ by rules 1 and 3, and the redundant 
transformation of „a„ to „b„ and back to „a„ by rules 2 

and3. Finite State Transducers provide a path to eliminate 

these inefficiencies. But first we need to convert the rules 

to State Machines. 
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Converting Rules to FSTs 

To do this, we simple represent each rule as an FST 

where each link between states represent the acceptance 

of an input character and the expression of the 

corresponding output character. This input / output 

combination is denoted within an FST by labeling edges 
with both the input and output character separated by the 

„/‟ character. Following is an FST for each of the above 

rules: 

 
Fig. 10 

Extending the FSTs 

While the FSTs above represent our set of context-

sensitive rules, they would be of little use in matching 

against an input string as each is designed to process 

exactly the context widow described in its corresponding 

rule. To make each FST applicable to a string of arbitrary 

length and perform the necessary translation each time 

the rule is fired, we will need to extend each of the 

Transducers. We do this by allowing for every possible 

input in our language at each state. For example, rule 1 

must be able to handle the string rsaxyrscxy. Since rule 1 

matches the string „cx„ and outputs the string „bx„, it 
must handle the characters ‟r„, ‟s„, ‟a„, ‟x„, ‟y„, ‟r„, and 

„s„ before finally encountering „c„ and ‟x„. Then it must 

handle the final „y„ character. Each of these characters 

(and all other possible characters) could be explicitly 

listed on its own individual edge, but to simplify, we can 

create a single edge labeled with „?/?„, to match and 

output any character not already represented on another 

edge leading from that state. FST extension of rules with 

a trailing context will also require the use of edges with 

an input but no output (labeled with „ε„ for output) and 

edges with multiple outputs. Following is the extension 
for each of the above FSTs: 

 

Fig. 11 

5 CONCLUSION 
We know that Natural Language Processing is a field that 

is part of both computer science and linguistics. It aims to 

process natural languages automatically with the less 

human supervision possible. Hence a lot of its domains 

use Finite State Machines as seen above with a lot of 

different requirements. 

Automata are seen as an efficient representation of data 

such as morphological rules or lexicons. Through this 

report we have seen that automata can be used in all 

stages of Natural Language Processing (NLP) even at 

various stages of translation. Automata can be used to 
represent the morphological analysis and phonological 

rules very efficiently as compared to other required 

techniques (Kaplan and Kay).It has been useful in 

grammars and syntax, for example in case of Context 

Free Grammars (Chomsky). They outperform in 

indexation in terms of speed (consumption time) and 

memory space consumption than other techniques. 

Automata can handle all the alphabets (set of strings), 

from boolean to real, that may be needed, by 

implementing both Finite State Automata and Finite State 

Transducers.  
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