
 Current Trends in Technology and Science

ISSN : 2279-0535. Volume : 04, Issue : 06 (Oct- Nov 2015)

Copyright © 2015 CTTS.IN, All right reserved

580

A Pilot Study on Natural Language Processing – Applications

of Finite State Automation

Shubham Chatterjee

Student, Department of Computer Science, St. Xavier‟s College (Autonomous), Kolkata, India

shubham.chatterjee94@gmail.com

Kasturi Paul

Student, Department of Computer Science, St. Xavier‟s College (Autonomous), Kolkata, India

paulkasturi15@gmail.com

Reek Roy

Student, Department of Computer Science, St. Xavier‟s College (Autonomous), Kolkata, India

reekroy1@gmail.com

Asoke Nath

Associate Professor, Department of Computer Science, St. Xavier‟s College (Autonomous), Kolkata, India
asokejoy1@gmail.com

Abstract — Natural language processing (NLP) may

be defined as the automatic or semi-automatic

processing of human language. The term ‘NLP’ is

sometimes considered to be a process which excludes

information retrieval and sometimes even machine

translation. Sometimes NLP is contrasted with

‘computational linguistics’. The alternative terms of

NLP are often preferred, like ‘Language Technology’

or ‘Language Engineering’. Language is often used in

contrast with speech (e.g., Speech and Language

Technology). In the present paper the authors refer

the term NLP in much more broader sense. NLP is

related to linguistics and also has links to research in

cognitive science, psychology, philosophy and

mathematical logic. In computer science, it relates to

formal language theory, compiler techniques, theorem

proving, machine learning and human-computer

interaction and also to AI. In the present paper, the

authors have given an introduction to natural

language processing and then application of theory of

finite state automation. The basic principles of Finite

State Automata Theory including DFAs and NFAs

are also discussed and finally applications of FSM in

NLP.

Keyword — Deterministic Automata, Finite state

transducer, Natural Language Processing, Non-

Deterministic Automata.

1 INTRODUCTION TO NATURAL LANGUAGE

PROCESSING
Natural Language Processing (NLP) is a field of

computer science, artificial intelligence and

computational linguistics concerned with the interactions
between computers and human (natural) languages. NLP

involves the natural language understanding, that is

enabling computers to derive meaning from human or

natural language input, and others involve natural

language generation. [3]

NLP is a theoretically motivated range of computational

techniques for analyzing and representing naturally

occurring texts at one or more levels of linguistic analysis

for the purpose of achieving human like language

processing for a range of tasks or applications. [4]

The goal of NLP is to accomplish human-like language

processing. NLP has made serious inroads into jobs like:

1) Paraphrase an input text.
2) Translate the text into another language.

3) Answer questions about the contents of the text.

There are more practical goals for NLP, mostly related to

the certain applications for which it is being applied. As

for example, an NLP based Information Retrieval System

has the goal of providing more accurate and complete

information in response to a user‟s actual information

need. The goal of NLP here is to represent the real

meaning and intent of the user‟s query, which can be

expressed as naturally in everyday language as if they

were conversing with a reference librarian. All the
contents of the documents that are being searched will be

represented at every level of meaning so that a correct

match between the requirement and response can be

discovered, no matter how either is represented in their

surface form. [4]

The lineage of NLP is mixed. Main contributors to the

discipline and practice of NLP are:

1) Linguistics-focuses on formal, structural models of

language and the discovery of language universals.

2) ComputerScience-is concerned with developing

internal representations of data and efficient
processing of these structures.

3) CognitivePsychology-looks at language usage as a

window into human cognitive processes, and has

the goal of modeling the usage of language in a

psychologically feasible way.

 Current Trends in Technology and Science

ISSN : 2279-0535. Volume : 04, Issue : 06 (Oct- Nov 2015)

Copyright © 2015 CTTS.IN, All right reserved

581

The central point of any NLP job is an important issue of

natural language understanding. The method of creating

computer programs that understand natural language

includes three major problems-the first one relates to

thought process, the second one to the representation and

meaning of linguistic input, and the third one to the world
knowledge. Thus an NLP system may start at the “word”

level-to determine the morphological structure, nature

etc. of the word, and then move on to the sentence level-

to determine the word order, grammar, meaning of the

entire sentence, etc.-and then to the context and the

overall environment or domain. A given word or a

sentence may have a particular meaning or connotation in

a given context or domain, and may be related to many

different other words and/or sentences in the given

context. [4].

2 ISSUES IN NATURAL LANGUAGE

PROCESSING
The tasks taking place within an NLP system generally

occurs in certain levels.

 Phonology deals with interpretation of speech

sounds within and across the word

 Morphology includes componential nature of the

words which are composed of morphemes (smallest

units of meaning);

 Lexical level includes both humans and NLP

systems determining the meaning of individual

words;

 Syntactic level deals with the analysis of the words
in a sentence in order to discover the grammatical

structure of the sentence

 Semantic level determines feasible meaning of a

sentence by focusing on the word-level meanings‟

interactions within the sentence.

 Other levels such as Disclosure, Pragmatic deals

with longer lengths of textual matter and more

intricate meaning deciphering. [4]

3 INTRODUCTION TO FINITE STATE

AUTOMATA
Automata theory is the study of abstract computing

devices or machines. During the time when computers

had still not developed and use of computers was still not
widespread, Allen Turing studied an abstract machine

that had all the capabilities of today‟s computers, at least

as far as in what they could compute. Turing wanted to

explain clearly what such a machine was capable of

doing or not doing. Later on, many simpler kinds of

machines, which we today call finite automata, were

developed. [2]

Finite State Automata (FSA) and Finite State

Transducers (FST) are Finite State devices which have

been used widely in the field of Computer Science since

the beginning of Computer Science period. These Finite
State devices used in a applications ranging from

compilation of programs to hardware modeling or

database management and other domains like speech

processing, Optical Character Recognition (OCR),

matching and recognition of patterns and many more.

Recently many mathematical and algorithmic results

have shown that Finite State technologies such as FSA

and FST have great impact on the representation of
electronic dictionaries and Natural Language Processing

(NLP) which as a result is leading to a new language

technology in academic and industrial research. [1]

Both FSA and FST operate on sets of strings (alphabets)

which are actually sets of sequences of symbols or

characters. These characters are either finite for example

the English alphabet or infinite like the Real Numbers. A

string is a finite sequence of symbols. „Free monoid’

is the set of strings which are built on an alphabet ∑. [1]

Finite automata are a useful model for many important

kinds of hardware and software. Some of the important

applications of the Finite State Automata are in [1]:

i) Switching theory

ii) Pattern recognition

iii) Speech processing

iv) Optical character recognition

v) Data compression

vi) Compiler theory

Many systems such as those listed above can be supposed

to be in one of a finite number of “states”. A state
remembers the relevant portion of the system‟s history.

The entire history cannot be remembered since there are

only a finite number of states. Hence, one of the “Eq.

important design issues for such systems to remember

what is important and to forget the unimportant parts.

Since there are a finite number of states, the system can

be implemented using a fixed set of resources.

The simplest example that one could give of a FSA is an

ON/OFF switch [2]. Such a device would remember

when it is in the ON state and when it is in the OFF state.

Depending on the state of the switch, the effect of a
button push would be different. If the switch is in ON

state, then it would go to an OFF state and vice-versa.

Such a switch could be modeled as in the figure below:

Fig. 1. A FSA for a switch

The states are represented by circles. In this example, the

states have been named as ON and OFF. The arcs are
labeled with the inputs. One of the states is the “start”

state and is identified by an arrow as shown in the figure.

One of the crucial distinctions among classes of finite

automata is whether that control is deterministic or non-

 Current Trends in Technology and Science

ISSN : 2279-0535. Volume : 04, Issue : 06 (Oct- Nov 2015)

Copyright © 2015 CTTS.IN, All right reserved

582

deterministic. Deterministic Automata cannot be in more

than one state at any given point in time whereas Non-

deterministic Automata can be.

3.1 Deterministic Finite Automata

3.1.1 What is DFA?

A Deterministic Finite Automata is a Finite State
Machine that accepts or rejects finite strings of symbols

and only produces a unique computation of the

automaton for each input string. The term

“Deterministic” refers to the uniqueness of the

computation.

 Fig. 2. An example DFA

The above Fig. 2 illustrates a DFA using a state diagram.

There are three states in the DFA, namely S0, S1 and S2.

S0 is the start state. The DFA accepts strings of the form
011, 01001, 010101, 00101101, etc. Whenever the DFA

reads a symbol, it jumps deterministically from one state

to the other, depending on the transition function. For

example δ(S0,1)=S1, so whenever the DFA reads the

symbol 1 and it is in state S0 at that moment, it will jump

to state S1. The DFA has a start state S0, represented in

the diagram by an arrow and a set of accepting states. In

this case, there is only one accepting state, which is S0.

A DFA is defined as an abstract mathematical concept

but it is widely implemented in hardware and software

terms owing to its deterministic nature. For example, a

DFA can model software that decides whether or not
online user-input such as email addresses are valid.

3.1.2 Formal Definition of a DFA

A Deterministic Finite Automata (DFA) M is a 5-tuple

1) A finite set of states, denoted by Q.

2) A finite set of input symbols, denoted by ∑.

3) δ is the transition function that takes a state in Q

and an input symbol in ∑ as arguments and returns

a subset of Q.

4) A start state (.

5) A set of final states F such that
Let w = a1a2 ... an be a string over the alphabet Σ. The

automaton M accepts the string w if a sequence of states,

r0, r1, ... , rn, exists in Q with the following conditions:

1) r0 = q0

2) ri+1 = δ(ri, ai+1), for i = 0, ..., n−1

3) rn∈F.

The above conditions mean that the DFA starts form the

initial state q0. Then it moves from one state to another

depending on the transition function. The DFA is said to

accept a string if it halts at one of the accepting states.
Otherwise we say that the DFA does not accept the

string. The set of string that the DFA M accepts is called

the language recognized by M and it is denoted by L(M).

3.1.3 An example of a DFA

Let us take the example of a DFA that accepts all and

only the strings of 0s and 1s that have the sequence 01

somewhere in the string [2]. We can write this language

L as:

{ w | w is of the form x01y for some strings x and y

consisting of 0s and 1s only }
Examples of strings in this language include 01, 11010,

100011, etc. examples of strings not in the language

include , 0, and 111000. We can define the automaton

that accepts this language as follows:

Fig. 3. DFA

3.2 Non-Deterministic Finite Automata

3.2.1 What is NDFA?

A “Non-deterministic” finite automaton (NFA) can be in

several states at given point of time. The ability is often

expressed as an ability to “guess” something about its
input [2]. For example, when the automaton is searching

for certain sequences of characters in a long string, it

would help to make a guess that it is at the beginning of

one of those strings and use a sequence of states to do

nothing but check that the string appears , character by

character. It can be shown that a language accepted by an

NFA is also acceptable to some DFA. We can convert

any NFA to an equivalent DFA using the subset

construction algorithm. Like DFAs, NFAs also accept

only regular languages.

Fig. 4. NDFA

The above figure illustrates an NFA using state diagram.

There are two states in the NFA, p and q. p is the start

state and q is the final state. As can be seen from the

figure, this automata is non-deterministic in the sense that

, that is, on encountering the input

symbol 1, if the NFA is in state p, it can go to either p or

q.

3.2.2 Formal Definition of a NDFA

A Non-Deterministic Finite AutomataA is a 5-tuple

(Q,∑,δ,q0,F) where

1) A finite set of states, denoted by Q.
2) A finite set of input symbols, denoted by ∑.

3) A transition function, that takes as a state and an

input symbol as arguments and returns a state. The

transition function is commonly denoted by δ. If q is

a state and a is an input symbol, then δ(q,a) is that

state p such that here is an arc labeled a from q to p.

4) A start state (.

5) A set of final states F such that

 Current Trends in Technology and Science

ISSN : 2279-0535. Volume : 04, Issue : 06 (Oct- Nov 2015)

Copyright © 2015 CTTS.IN, All right reserved

583

Let w = a1a2 ... an be a string over the alphabet Σ. The

automaton A accepts the string w if a sequence of states,

r0, r1, ... , rn, exists in Q with the following conditions:

1) r0 = q0

2) ri+1 = δ(ri, ai+1), for i = 0, ..., n−1

3) rn∈F.

3.2.3 An example of an NDFA

Let us take the example of an NFA which accepts exactly

those strings that have any number of either the symbols

a or b in the starting and always end with the string abb.

Examples of such strings include aabb, babb, aabbabb

etc. The NFA has been shown below:

Fig. 5. An example of NFA

3.3 Finite State Transducers

3.3.1 What is an FST?

Finite-State Transducers can be conceptually thought of
as defining a class of graphs, a class of relations on

strings, or a class of transductions on strings [1]. A finite

state transducer (FST) is a finite state machine with two

tapes: an input tape and an output tape. This contrasts

with an ordinary finite state automaton (or finite state

acceptor), which has a single tape. The two tapes of a

transducer are typically viewed as an input tape and an

output tape. On this view, a transducer is said to

transduce (i.e., translate) the contents of its input tape to

its output tape, by accepting a string on its input tape and

generating another string on its output tape. It may do so
non-deterministically and it may produce more than one

output for each input string. A transducer may also

produce no output for a given input string, in which case

it is said to reject the input. In general, a transducer

computes a relation between two formal languages.[6]

Each string-to-string finite state transducer relates the

input alphabet Σ to the output alphabet Γ. Relations R on

Σ*×Γ* that can be implemented as finite state transducers

are called rational relations. Rational relations that are

partial functions, i.e. that relate every input string from

Σ* to at most one Γ*, are called rational functions.[6]
Finite-state transducers are often used for phonological

and morphological analysis in natural language

processing research and applications.[6]

3.3.2 Formal Definition of an FST

A Finite-State Transducer T is a 6-tuple

where:

 is a finite set of states

 is finite set, called the input alphabet

 is finite set, called the output alphabet

 is the initial state.

 is the set of final states.

 is the set of transition
relations.

We can view as a labeled directed graph, known

as the Transition Graph of T. The set of vertices is Q and

 means that there is a labeled edge going

from vertex q to vertex r. Also, a is the input label and b
is the output label of that edge. [6]

3.3.3 Some other definitions

 Path: An Extended Transition Function is

defined as the smallest set such that :

 and

The extended transition relation is essentially the

reflexive transitive closure of the transition graph

that has been augmented to take edge labels into

account. The elements of are known as paths.

The edge labels of a path are obtained by

concatenating the edge labels of its constituent

transitions in order. A successful path is a path that

starts from an initial state and ends in a final state.

 Underlying finite-state automaton: If

T= is a FST, then its underlying

FSA is defined as follows:

 Rational Functions: A regular (or rational)

relation over the alphabets Σ, Γ is formed from a

finite combination of the following rules:

i) ∀ (x, y) ∈ Σ ∪ {ε} × Γ ∪ {ε}

ii) ∅ is a regular relation

iii) If R, S are regular relations, then so are R ◦ S, R ∪S,

and R∗

iv) Each string-to-string finite state transducer relates

the input alphabet Σ to the output alphabet Γ.

Relations R on Σ*×Γ* that can be implemented as
finite state transducers are called rational relations.

Rational relations that are partial functions, i.e. that

relate every input string from Σ* to at most one Γ*,

are called rational functions.

4 SOME APPLICATIONS OF FINITE STATE

AUTOMATA AND DISCUSSIONS THE

SUBJECT
1) This work which was published in Introduction to

Finite-State Devices in Natural Language

Processing June 1996, MITSUBISHI ELECTRIC

RESEARCH LABORATORIES. The authors have

tried to show how the closure property of FSA

exhibits their use, uniformity and flexibility on

constraints operating on a local context. In these

examples the input string, the lexicon, the local

syntactic rules are all represented as Finite State

Automata and the combination of rules

corresponding to operations on FSA produce other

FSA. We give an overview of the method here.
Interested readers can refer to the published work

for more details.

 Current Trends in Technology and Science

ISSN : 2279-0535. Volume : 04, Issue : 06 (Oct- Nov 2015)

Copyright © 2015 CTTS.IN, All right reserved

584

Let us assume that we have to analyze the below given

statement:

He hopes that this works

i) If we look up in the dictionary we can easily

identify that the word „He‟ is a pronoun, „hopes‟ is a

noun or a verb, „that‟ is a determiner or a pronoun
or a conjunction, „this‟ is a determiner or a pronoun

and the word „works‟ is a noun or a verb. These

kinds of morphological information that are already

encoded within a dictionary are easily represented

by a Finite State Automata in Fig. 6 below:

Fig. 6

ii) The automaton of the word „that‟ could be easily

done since the dictionary lookup gave us such

representations. Similarly the morphological

information of all the other words in the sentence

that we took to analyze can be also represented by

individual automaton for each word. Hence the
morphological analysis of the whole input sentence

can also be represented by a FSA as shown in Fig. 7

below. As we can see that the dictionary and the

morphological analysis of a sentence can be

represented by a FSA, the morphological

disambiguating rules can also be represented by a

FSA.

Fig. 7

iii) If we have to encode a negative rule stating the

partial analysis “that Det this Det” is not possible,

then the negative constraint can be encoded by the

automaton as shown in Fig. 8 below.

Fig. 8

iv) We see that applying the constraint of Fig. 8 to the

Fig. 7 gives the automaton shown in Fig. 9 .

Fig. 9

2) FSTs are particularly useful in the implementation of
certain natural language processing tasks [8]. Context-

sensitive rewriting rules (e.g. ax → bx) are adequate

for implementing certain computational linguistic

tasks such as morphological stemming and part-of-

speech tagging. Such rewrite rules are also

computationally equivalent to finite-state transducers,

providing a unique path for optimizing rule based

systems.

Take, for example, the following set of ordered

context-sensitive rules:

 change ‘c’ to ‘b’ if followed by ‘x’

cx → bx
 change ‘a’ to ‘b’ if preceded by ‘rs’

rsa → rsb
 change ‘b’ to ‘a’ if preceded by ‘rs’ and followed

by ‘xy’ rsbxy → rsaxy

Given the following string on the input tape:

rsaxyrscxy

the application of the given rule set would proceed as
follows:

 rsaxyrscxy→rsaxyrsbxy

 rsaxyrsbxy→rsbxyrsbxy

 rsbxyrsbxy → rsaxyrsaxy
The time required to apply a sequence of context-

sensitive rules is dependent upon the number of rules, the

size of the context window, and the number of characters

in the input string. The inefficiencies in such an

implementation are highlighted in this example by the

multi-step transformation required to translate „c„ to „b„

then „b„ to „a„ by rules 1 and 3, and the redundant
transformation of „a„ to „b„ and back to „a„ by rules 2

and3. Finite State Transducers provide a path to eliminate

these inefficiencies. But first we need to convert the rules

to State Machines.

 Current Trends in Technology and Science

ISSN : 2279-0535. Volume : 04, Issue : 06 (Oct- Nov 2015)

Copyright © 2015 CTTS.IN, All right reserved

585

Converting Rules to FSTs

To do this, we simple represent each rule as an FST

where each link between states represent the acceptance

of an input character and the expression of the

corresponding output character. This input / output

combination is denoted within an FST by labeling edges
with both the input and output character separated by the

„/‟ character. Following is an FST for each of the above

rules:

Fig. 10

Extending the FSTs

While the FSTs above represent our set of context-

sensitive rules, they would be of little use in matching

against an input string as each is designed to process

exactly the context widow described in its corresponding

rule. To make each FST applicable to a string of arbitrary

length and perform the necessary translation each time

the rule is fired, we will need to extend each of the

Transducers. We do this by allowing for every possible

input in our language at each state. For example, rule 1

must be able to handle the string rsaxyrscxy. Since rule 1

matches the string „cx„ and outputs the string „bx„, it
must handle the characters ‟r„, ‟s„, ‟a„, ‟x„, ‟y„, ‟r„, and

„s„ before finally encountering „c„ and ‟x„. Then it must

handle the final „y„ character. Each of these characters

(and all other possible characters) could be explicitly

listed on its own individual edge, but to simplify, we can

create a single edge labeled with „?/?„, to match and

output any character not already represented on another

edge leading from that state. FST extension of rules with

a trailing context will also require the use of edges with

an input but no output (labeled with „ε„ for output) and

edges with multiple outputs. Following is the extension
for each of the above FSTs:

Fig. 11

5 CONCLUSION
We know that Natural Language Processing is a field that

is part of both computer science and linguistics. It aims to

process natural languages automatically with the less

human supervision possible. Hence a lot of its domains

use Finite State Machines as seen above with a lot of

different requirements.

Automata are seen as an efficient representation of data

such as morphological rules or lexicons. Through this

report we have seen that automata can be used in all

stages of Natural Language Processing (NLP) even at

various stages of translation. Automata can be used to
represent the morphological analysis and phonological

rules very efficiently as compared to other required

techniques (Kaplan and Kay).It has been useful in

grammars and syntax, for example in case of Context

Free Grammars (Chomsky). They outperform in

indexation in terms of speed (consumption time) and

memory space consumption than other techniques.

Automata can handle all the alphabets (set of strings),

from boolean to real, that may be needed, by

implementing both Finite State Automata and Finite State

Transducers.

REFERENCES
[1] Emmanuel Roche and Yves Schabes, Introduction

to Finite-State Devices in Natural Language

Processing June 1996, MITSUBISHI ELECTRIC

RESEARCH LABORATORIES

[2] Hopcroft, John E.; Motwani, Rajeev; Ullman,
Jeffrey D. (2001). “Introduction to Automata

Theory, Languages, and Computation (3 ed.).

Pearson Publications”.

[3] https://en.wikipedia.org/wiki/

Natural_language_processing

[4] Liddy, E. D, “Encyclopedia of Library and

Information Science, 2nd Ed. Marcel Decker, Inc”.

[5] ANS S I YLI - JYR ¨A, ANDR ´A S KORNAI,

JACQUES SAKAROVITCH, “Finite-State

Methods and Models in Natural Language

Processing, 2010 Cambridge University Press”
[6] https://en.wikipedia.org/wiki/Finite_ state_

transducer

[7] Jimmy Ma, “Automata in Natural Language
Processing , Technical Report no0834, December

2008, Revision 2002”

[8] http://infolocata.com/mirovia/ finite-state-

transducers-for-natural-language-processing

[9] Mehryar Mohri, “On Some Applications of Finite

State Automata Theory to Natural Language

Processing, Cambridge University Press, 1995”

[10] Shuly Wintner, “Formal Language Theory for

Natural Language Processing”

[11] Daniel Jurafsky and James H. Martin, “Speech and

Language Processing: An introduction to natural
language processing, computational linguistics,

and speech recognition, 2006”

http://infolocata.com/mirovia/wp-content/uploads/2012/11/fst_1.png
http://infolocata.com/mirovia/wp-content/uploads/2012/11/fst_2A.png

 Current Trends in Technology and Science

ISSN : 2279-0535. Volume : 04, Issue : 06 (Oct- Nov 2015)

Copyright © 2015 CTTS.IN, All right reserved

586

[12] Lauri Karttunen, “Applications of Finite State

Transducers in Natural Language Processing.”

[13] Anne Kao and Steve Poteet, “Text Minining and

Natural Language Processing-Introduction for the

Special Issue”

[14] Harvey J Greenberg, “A Natural Language
Discourse Model to explain Linear Programming

Models and Solutions”

[15] Anssi Yli-Jyra, Andras Kornai, Jacques

Sakarovitch, “Finite-State Methods and Models in

Natural Language Processing”

[16] Gobinda C Chowdhury, “Natural language

processing” University of Strathclyde

[17] Jasmeen Kaur, Bhawna Chauhan, Jatinder Kaur

Korepal, “Implementation of Query Processor

Using Automata and Natural Language

Processing” International Journal of Scientific and
Research Publications, Volume 3, Issue 5, May

2013, ISSN 2250-3153

[18] Mengqiu Wangand Christopher D. Manning,

“Probabilistic Finite State Machines for

Regression-based MT Evaluation”

[19] Ronan Collobert, Jason Weston, Leon Bottou,

Michael Karlen, Koray Kavukcuoglu, Pavel

Kuksa, “Natural Language Processing (Almost)

from Scratch” Journal of Machine Learning

Research 12 (2011) ISSN-2493-2537

[20] Matthew Lease, “Natural Language Processing for

Information Retrieval: the time is ripe (again)”

AUTHOR’S PROFILE
Asoke Nath is Associate Professor in the

Department of Computer Science, St.

Xavier‟s College (Autonomous), Kolkata,

India. Apart from his teaching assignment

he is actively associated with research

work in field of Cryptography and Network Security,

Steganography, Green Computing, E-learning, MOOCs,

Big data analytics, Cognitive Radio etc. He has already

published 157 research papers in International Journals

and Conference Proceedings. He is the Life member of

MIR Labs(USA), CSI Kolkata Chapter.

Shubham Chatterjee is a student of MSc

Computer Science at St. Xavier‟s College

(Autonoumous), Kolkata. Along with

normal studies, he is engaged in research

work in the field of Computer Vision,

Natural Language Processing, Li-Fi

Technology, Android Security, Etc. He has

published 4 research papers till date in above areas.

Kasturi Paul a student of MSc Computer

Science at St. Xavier‟s College

(Autonoumous), Kolkata. Along with

normal studies, she is engaged in research

work in the field of Computer Natural

Language Processing.

Reek Roy is a student of MSc Computer

Science at St. Xavier‟s College

(Autonoumous), Kolkata. Along with

normal studies, she is engaged in research

work in the field of Computer Natural

Language Processing.

