
 Current Trends in Technology and Sciences
ISSN: 2279- 0535. Volume: 3, Issue: 5 (Aug-Sept. 2014)

Copyright © 2014 CTTS.IN, All right reserved

359

Reconfigurability in FPGA’s
G.Prasad gurram_p@yahoo.com,

N.Vasantha vasantha54321@gmail.com,

C V Srinivas chalamchala_vas@yahoo.co.in,

B.Lakshmi lrsbayyalakshmi@gmail.com

Abstract - FPGAs keep getting larger and faster.

They have reached a level where a whole 32 bit CPU

fits into a single FPGA and doesn’t even fill it. So

FPGAs can house quite large logic circuits. Another

development branch leads to dynamically

reconfigurable FPGAs. That means that certain areas

within the FPGA can be reconfigured while the rest

continues to run unaffected. The next step is to

combine these two abilities. In this paper we show

how we implemented a on chip memory on an FPGA

and combined it with an PCI –X IP core which can be

in master read and master write mode of operation

while the memory continues to run unaffected.

We explain the steps it took to build the memory on

the FPGA, interface to a FIFO to buffer data to and

from the FPGA, and to get two different operations to

work. These operations are the memory read control

and memory write control of the PCI core on the

FPGA, they will be replaced on requirement with

dynamic reconfiguration. Memory Read operation

will be used for data read out from the hard disk

through external FIFO, on chip memory and

serializing, and Memory write operation will read

data from the on chip memory, to external FIFO and

through the PCI-X core to the cache and hard disk

Satellite Data Acquisition.

Key words - FIFO, PCI IP Master Core, DMA,

AHDL, CPLD

1. INTRODUCTION

Reconfigurable computing is the process of changing the

structure of a reconfigurable device at start-up time

respectively at run time. The logic block is defined by its

internal structure and granularity. The structure defines

the different kinds of logic that can be implemented in
the block, while the granularity defines the maximum

word length of the implemented functions. The

functionality of the logic block is obtained by controlling

the connectivity of some basic logic gates or by using

LUTs and has a direct impact on the routing resources.

As the functional capability increases, the amount of

logic that can be packed into it increases. A collection of

CLB/LAB known as a logic cluster, is described with the

following four parameters: the size of (number of inputs

to) a LUT, the number of CLB/LAB in a cluster, the

number of inputs to the cluster for use as inputs by the

LUT and the number of clock inputs to a cluster (for use
by the register). Thus the size and complexity of the basic

computing blocks is referred to as the block granularity.

All the reconfigurable platforms based on their

granularity are distinguished into two groups, the fine

grain and coarse grain systems. A number of
reconfigurable systems use a granularity of logic block

that we categorize as medium grained. Medium grained

logic blocks may be used to implement data path circuits

of varying bit widths, similar to the fine grained

structures. Fine grain array has many configuration

points to perform very small computations and thus

requires more data bits during configuration. This is

because the basic programmed building block consists of

a combinatorial network and a few flip-flops in fine

grained architectures. The fine grain programmability is

more amenable to control functions, while the coarser
grain blocks with arithmetic capability are more useful

for data path operations.

Dynamic Reconfiguration is the ability to update only a

portion of the configuration memory in an FPGA with a

new configuration without stopping the functionality of

the unchanged section of the FPGA. Dynamic

Reconfiguration enlarges the design space for developers.

Different logic functions can be stored in memory until

the need arises for them to be configured into the FPGA.

Recent advances in the manufacturing process promise

50 million gates of reconfigurable Logic at substantially

lower costs. The increased gate count along with richer
embedded feature sets has greatly improved the

economics for using Reconfigurable Technology. One

single FPGA can simultaneously carry various complex

cores like processors, pseudo random generators, control

logic and filters just to name a few of them. Dynamic

Reconfiguration allows replacing a specific core if a new

function is required. This situation is similar in the

manner with computers with large hard drives storing

applications for days before they are loaded into memory.

Imagine a system which uses five different cores over the

time, but not more than three simultaneously. Without
dynamic reconfiguration you would either need a huge

FPGA which can carry all cores at once, or you would

need three individual FPGAs which will be fully

reconfigured. The first case is a waste of FPGA area. The

second case implies increased hardware costs and power

consumption. Some cores support dual functions. With

dynamic reconfiguration an FPGA which has the size to

carry three cores (for all occurring combinations) will

suffice. All cores are stored in memory. On requirement,

an unused core can be replaced with a new core by a

partial bit stream. The difference to a full reconfiguration

is that the other cores aren’t affected by the
reconfiguration and keep their state.

mailto:gurram_p@yahoo.com
mailto:vasantha54321@gmail.com

 Current Trends in Technology and Sciences
ISSN: 2279- 0535. Volume: 3, Issue: 5 (Aug-Sept. 2014)

Copyright © 2014 CTTS.IN, All right reserved

360

2.QUARTUS SOFTWARE AND ALTERA

HARDWARE DESCRIPTIVE LANGUAGE
The Altera Quartus II design software is a multiplatform

design environment that easily adapts to specific needs in

all phases of FPGA and CPLD design. Quartus II
software delivers the highest productivity and

performance for Altera FPGAs, CPLDs, and Hard Copy

ASICs. Quartus II software delivers superior synthesis

and placement and routing, resulting in compilation time

advantages. Compilation time reduction features include,

Multiprocessor support, Rapid Recompile, Incremental

compilation. Quartus II Analysis and Synthesis, together

with the Quartus II Fitter, incrementally compiles only

the parts of your design that change between

compilations. By compiling only changed partitions,

incremental compilation reduces compilation time by up
to 70 percent. For small engineering change orders

(ECOs), the Rapid Recompile feature maximizes your

productivity by reducing your compilation time by 65

percent on average, and improves design timing

preservation.

AHDL is a proprietary digital Hardware Description

Language (HDL) from Altera Corporation for

programming their Complex Programmable Logic

Devices (CPLD) and Field Programmable Gate Arrays

(FPGA). This language has an Ada programming

language-like syntax and similar operation to VHDL or
Verilog. It is supported by Altera's Quartus and Max+

series of compilers. An advantage of AHDL is that all

language constructs are synthesizable. AHDL is to

Verilog much as assembly language is to a higher-level

programming language: in AHDL, you have more

control.

3. FPGA 90NM STRATIX EP1S25F1020C5
The Stratix FPGA is used to implement the following

modules. Static configuration of on chip memory and

PCI core, interface & control logic, and Dynamic

Configuration logic. Stratix devices contain a two-

dimensional row- and column-based architecture to

implement custom logic [19]. A series of column and

row interconnects of varying length and speed provides

signal interconnects between logic array blocks (LABs),

memory block structures, and DSP blocks. The logic

array consists of LABs, with 10 logic elements (LEs) in

each LAB. An LE is a small unit of logic providing
efficient implementation of user logic functions. LABs

are grouped into rows and columns across the device.

M512 RAM blocks are simple dual-port memory blocks

with 512 bits plus parity (576 bits). These blocks provide

dedicated simple dual-port or single-port memory up to

18-bits wide at up to 318 MHz. M512 blocks are grouped

into columns across the device in between certain LABs.

M4K RAM blocks are true dual-port memory blocks

with 4K bits plus parity (4,608 bits). These blocks

provide dedicated true dual-port, simple dual-port, or

single-port memory up to 36-bits wide at up to 291 MHz.
These blocks are grouped into columns across the device

in between certain LABs. M-RAM blocks are true dual-

port memory blocks with 512K bits plus parity (589,824

bits). These blocks provide dedicated true dual-port,

simple dual-port, or single-port memory up to 144-bits

wide at up to 269 MHz. Several M-RAM blocks are
located individually or in pairs within the device’s logic

array.

Digital signal processing (DSP) blocks can implement up

to either eight full-precision 9 × 9-bit multipliers, four

full-precision 18 × 18-bit multipliers, or one full-

precision 36 × 36-bit multiplier with add or subtract

features. These blocks also contain 18-bit input shift

registers for digital signal processing applications,

including FIR and infinite impulse response (IIR) filters.

DSP blocks are grouped into two columns in each device.

Each Stratix device I/O pin is fed by an I/O element
(IOE) located at the end of LAB rows and columns

around the periphery of the device. I/O pins support

numerous single-ended and differential I/O standards.

Each IOE contains a bidirectional I/O buffer and six

registers for registering input, output, and output-enable

signals. When used with dedicated clocks, these registers

provide exceptional performance and interface support

with external memory devices such as DDR SDRAM,

FCRAM, ZBT, and QDR SRAM devices. High-speed

serial interface channels support transfers at up to 840

Mbps using LVDS, LVPECL, 3.3-V PCML, or

HyperTransport technology I/O standards.

4. STATIC CONFIGURATION OF ON CHIP

MEMORY AND PCI IP MASTER CORE.
In the on chip implementation and PCI core mentioned

below each module consists of one configuration. The

distinctive feature of this static configuration is that it

consists of single system wide configuration. Prior to

commencing an operation, the reconfigurable resources
are loaded with their respective configurations. Once

operation commences, the reconfigurable resources will

remain in this configuration throughout the operation of

the application. Thus hardware resources remain static

for the life of the design and static reconfiguration

allocates logic for the duration of an application. In our

design the on chip is designed to store 1K Qwords of

memory during Master write or during Master read

function. The PCI core can be statically reconfigured to

function as a PCI Master read or PCI master write

depending on the application. In both the situations the

on chip memory is unaltered and only the application
functions are reconfigured. Thus both the functions were

realized in the single FPGA and also in the same PCB.

On-chip memory is the simplest type of memory for use

in an FPGA-based embedded system. The memory is

implemented in the FPGA itself; consequently, no

external connections are necessary on the circuit board.

On-chip memory is the highest throughput, lowest

latency memory possible in an FPGA-based embedded

system. It typically has a latency of only one clock cycle.

Memory transactions can be pipelined, making a

throughput of one transaction per clock cycle typical.
Some variations of on-chip memory can be accessed in

dual-port mode, with separate ports for read and write

transactions. Dual-port mode effectively doubles the

http://en.wikipedia.org/wiki/Proprietary_software
http://en.wikipedia.org/wiki/Hardware_Description_Language
http://en.wikipedia.org/wiki/Hardware_Description_Language
http://en.wikipedia.org/wiki/Hardware_Description_Language
http://en.wikipedia.org/wiki/Altera_Corporation
http://en.wikipedia.org/wiki/Complex_Programmable_Logic_Device
http://en.wikipedia.org/wiki/Complex_Programmable_Logic_Device
http://en.wikipedia.org/wiki/Complex_Programmable_Logic_Device
http://en.wikipedia.org/wiki/Field_Programmable_Gate_Array
http://en.wikipedia.org/wiki/Ada_programming_language
http://en.wikipedia.org/wiki/Ada_programming_language
http://en.wikipedia.org/wiki/Ada_programming_language
http://en.wikipedia.org/wiki/VHDL
http://en.wikipedia.org/wiki/Verilog

 Current Trends in Technology and Sciences
ISSN: 2279- 0535. Volume: 3, Issue: 5 (Aug-Sept. 2014)

Copyright © 2014 CTTS.IN, All right reserved

361

potential bandwidth of the memory, allowing the

memory to be written over one port, while

simultaneously being read over the second port. Another
advantage of on-chip memory is that it requires no

additional board space or circuit-board wiring because it

is implemented on the FPGA directly. Using on chip

memory can often save development time and cost.

Finally, some variations of on-chip memory can be

automatically initialized with custom content during

FPGA configuration. This memory is useful for holding

small bits of boot code or LUT data which needs to be

present at reset.

The on chip memory was designed using the M RAM

block of the Stratix device as shown in Table 1. In our
design the FPGA memory was built to accommodate

1000 Q Words (64bit) and each frame is of 302 Q Words.

The FPGA on chip memory was designed as two

memory banks of capacity 1000 Q words each. Using the

alternate buffer concept the read and write operations

were designed so that 1000 words i.e. 3 frames of data

can be written in one buffer and then the write operation

will switch to the next buffer and remaining 1000Q

Words will be written.

On chip

Memory

Bank 1
1k x72 bits

On chip
Memory
Bank 2

1k x72 bits

FIFO

BANK 1

2 x 128KB

FIFO

BANK 2

2 x 128KB

To
hostFPGA

64bit

64bit

64bit

Data,
Address

& control

signals

Figure 1. On chip interface to Onboard FIFO

On chip Memory Implementation using the LPM

function of Altera Quartus

When the first bank writing is complete a control signal

will be issued by the memory controller so that the first

buffer data can be read on to the external FIFO, thus the

3 frames written in the first bank will be written to the

external FIFO by enabling the write control signal and

write clock of the external FIFO. After read out from the

first on chip memory bank now this bank will be ready to

take in the next 3 frames. Next the second memory bank

will be writing to the external FIFO and this memory

will also be available for next 3 frames. This will result

in continuous write and read between on chip memory
and external FIFOs. Thus a large memory of desired

volume can be realized. Read operation of the external

FIFO will empty the FIFO thus in this way required

volume of data from multiple inputs can be written and

stored.

Device RAM Name RAM

(banks)
Size

(bits)

Confi

guration

Xilinx

Virtex

Block RAM 8 - 208 4096 4096 x1

2048 x2

Altera

Apex E

Embedded

system block

12 -216 2048 2048 x1

1024 x 2

Stratix M-RAM blocks 3 -138 589,82

4

8K × 72

Table 1. FPGA On chip RAMs

Total Memory bits that were required to realize the above
design was 573456bits out of 1944576 bits (i.e. 29.49%

of the memory bits) and since toggling between high

frequency clock (read) and low frequency clock (write) a

power saving of 10% was observed.

Figure 2. PCI CORE

The PCI core is a dual functionality core which enables

to read and write to system memory.The FPGA is
statically configured for PCI Master Read and PCI

Master write operations. Depending on the requirement

the corresponding configuration is loaded and will

remain till the operation is complete. If change of

functionality is required than again the required

functionality is configured till the operations are

complete.

5.PCI MASTER READ
To initiate a master read transaction, the master control

logic requests the bus by asserting the lm_reqn signal to

the local side of the pci_core function [16] for a 64-bit

transaction. At the same time, the DMA engine signals

the FIFO interface to request an FIFO access. The PCI

function asserts reqn to request the PCI bus and

simultaneously asserts lm_tsr from the local side to

indicate that the master is requesting the PCI bus. On

receiving the gntn signal from the arbiter, the pci_core
function asserts the lm_adr_ackn and lm_tsr local side

signals, indicating that the bus has been granted and the

local side must supply the starting address and command.

The master control provides the PCI address on l_adi and

the PCI command on l_cbeni during the same clock cycle

that the lm_adr_ackn and lm_tsr signals are asserted. The

master control asserts the lm_rdyn input to the pci_core

function to indicate that it is ready to accept data. The

pci_core function asserts lm_ackn, indicating to the

master control that it has registered data from the PCI

side on the previous clock cycle and is ready to send data

to the local side master interface. Because lm_rdyn was
asserted in the previous clock cycle and lm_ackn is

asserted in the current cycle, the function asserts

lm_dxfrn to indicate a valid data transfer on the local

side. The pci_mtcore function also asserts lm_tsr,

indicating to the master control that a data phase was

completed successfully on the PCI bus during the

 Current Trends in Technology and Sciences
ISSN: 2279- 0535. Volume: 3, Issue: 5 (Aug-Sept. 2014)

Copyright © 2014 CTTS.IN, All right reserved

362

previous clock. The FIFO interface logic reads one

WORD of data at a time from the PCI-to- FIFO buffer,

writes into onchip memory and later shifts data into the
external FIFO. During a master read transaction, the

master control logic asserts the stop signal to the DMA

and the FIFO interface if the master must release the bus

prematurely. The lm_lastn signal is asserted to the core to

end the transaction normally, i.e., all data has been

received. When the lm_lastn signal is asserted, the core

deasserts framen as soon as possible and asserts irdyn to

read the last data on the PCI bus. Additionally, the FIFO

interface transfers all valid data from the PCI-to-FIFO

buffer and stops the operation. If the master has not read

all of the data from the target due to premature
termination, the master control logic and the DMA

engine start a new master read cycle to read the

remaining data. During master read the data from hard

disk will be read out to the PCI FIFO, to on chip memory

and than to external FIFO on the board. During master

read transactions, the FIFO interface logic controls data

from the PCI FIFO to the external FIFO buffer.

6. PCI MASTER WRITE
To initiate a master write transaction The DMA sends a

signal to the FIFO interface to request an FIFO access.

The master control logic waits for the external FIFO -to-

PCI FIFO buffer to be filled with a predetermined
number of WORDs before requesting the PCI bus. This

action ensures that the master does not violate PCI

latency protocol because of slow FIFO reads. If the

transfer count is less than required WORDs, the master

control logic waits for all of the data to be ready in the

FIFO -to-PCI FIFO buffer before requesting the bus. If

the transfer count is more than or equal to required

WORDs, it waits for 32 WORDs to be written into the

FIFO buffer before requesting the bus by asserting

lm_reqn signal. On receiving gntn, the pci_core function

asserts lm_tsr[1] and lm_adr_ackn. This action indicates

to the local side that the bus has been granted and the
local side must provide a valid address and command on

l_adi and l_cbeni, respectively. The master control logic

asserts lm_rdyn to the pci_core function to indicate that it

is ready to transfer the data from external FIFO -to-PCI.
During master write the data from on chip memory will

be read out to the external FIFO, than -to-PCI FIFO in

the core, to the hard disk through the cache memory.

During master write transactions, the FIFO interface

logic controls data from the external FIFO to the PCI

FIFO buffer. Because of the reconfigurability feature the

master read and master write transactions are
implemented on the same board. By configuring the

board for master write operations data is read from the

external FIFO to the hard disk and by configuring for the

master read operations date is read from the hard disk to

external FIFO, without changing the total design only the

interface logic needs to be changed to achieve this. The

data path FIFO buffers provide an internal buffer for the

data transferred between the PCI bus and the external

FIFO. The PCI core has the two FIFO buffers each of

128 x 32 size, one will be used for transactions from PCI

core to external FIFO and other from external FIFO to

PCI Core depending on the selection of Master_write or

Master_read.

7. DYNAMIC CONFIGURATION
The logic is designed to cater to past, present and future

satellite missions. The frame formats of every satellite

are different, with selectable configuration logic the

desired satellite whose data is to be acquired is selected

depending on the selection parameters. Applying the

principle of Dynamic Reconfiguration [20] only the

portion of configuration memory in an FPGA

corresponding to the satellite selected is enabled without

stopping the unchanged section of the FPGA. Different

logic functions are stored in memory and dynamic

allocation scheme re-allocates hardware at run time. By
dynamically loading the parameters during operation,

system performance increases. The functional

configuration of the device is modified or changed during

operation through the software via the PCI core or offline

through a front panel switch. Here the physical hardware

is much smaller than the sum of the resources required by

each of the configurations. Therefore instead of reducing

the number of configurations that are mapped, we swap

them in and out of the actual hardware as and when they

are needed. Using the reconfigurable facility, if one

satellite is selected the parameters corresponding to that
satellite get loaded and we will be able to acquire data

from the selected satellite.

The on chip memory configuration is fixed and will

support both PCI Master read and PCI Master write

modes of operation. Thus using the principle of dynamic

configuration only the PCI modes are reconfigured but

the memory part of the configuration is unchanged. For

different satellites the number of frames to fit into

memory may be changed accordingly.

8. CONTROL AND INTERFACE LOGIC.
During PCI master write the interface control logic will

check for the status of the on board FIFOs and when one

bank shows half full status, it makes that bank available
for read to the PCI core. Once the FIFO half full flag is

set the read operation is initiated and data is read from

fifo to host system through the PCI core. The write

frequency is derived from the input clock and is slow.

The read frequency of the on chip RAM is derived from

the input clock and is of high frequency than the write

clock. The same read clock will be used to write into the

external FIFO shown in Table 2. Thus the reading and

writing are done without conflicts and errors like data

overflow, data overrun etc.

During PCI master read the interface control logic will
monitor the status of the PCI core FIFO and depending

on its status will readout the data to the on chip memory

and to the external FIFO. This will use the PCI clock

which is very fast for read out and write to on chip

memory. The read out from the on chip memory and

external FIFO is a slower clock compared to the PCI

clock.

 Current Trends in Technology and Sciences
ISSN: 2279- 0535. Volume: 3, Issue: 5 (Aug-Sept. 2014)

Copyright © 2014 CTTS.IN, All right reserved

363

The multi-context architecture includes multiple memory

bits for each programming bit location. These memory

bits can be thought of as multiple planes of configuration.
Only one place of configuration information can be

active at a given moment, but the architecture can

quickly switch between different planes, or contexts, of

already programmed configurations. Using this principle

the control and interface logic will switch between PCI

master write and PCI master read.

9. SIMULATION RESULT

Figure 3 DMA burst in chaining mode.

10. CONCLUSION
The Reconfigurable computing enables to use a single

board for PCI Master write or PCI Master read depending

on the application for which it is intended to be used.

Without Reconfigurable computing two different boards

have to be designed and fabricated for testing out the two

different applications. The FPGA based PCI core

interface, and associated logic designed and developed is

suitable for satellite data acquisition systems in the

Ground segment. The throughput to the host achieved is

between 100 to 220Mbytes/second thus it can cater to

high speed data acquisition. Since the major modules are
incorporated into the FPGA a power reduction of nearly

20% is achieved in the design. The logic is validated with

an inbuilt simulator so that the total chain involved in the

design is completely tested.

REFERENCES
[1] DDR and DDR2 SDRAM High-Performance

Controllers and ALTMEMPHY IP User Guide

section in volume 3 of the External Memory

Interface Handbook

[2] On-Chip FIFO Memory Core in Volume 5:

Embedded Peripherals of the Quartus II

[3] IDT FIFO Reference Guide

[4] Memory Interfaces made easy with Xilinx FPGAs

and memory Interface Generator, WP260(v1.0)

February 16,2007.

[5] Developing high speed memory interfaces. The

Lattice SCM FPGA advantage White paper

February 2006.

[6] Memory System Design from Altera Corporation

February 2010.

[7] Global Memory Mapping for FPGA based
Reconfigurable systems, Iyad Quaiss and Ranga

Vemuri

[8] J. Toledo, H.Muller, J. Buytaert, F.Bal, A.David,

A.Guirao and F.J.Mora (2002), “A plug and play

approach to data acquisition”, Network

architecture and performance digital equipment

corporation, Littleton

[9] Charles Geber, Kevin Yee (2000), “Peripheral

component interfaces with quick logic QL1624

FPGA”, quick logic corporation, Santa Clara.

[10] Jim McManus, PCI Applications Engineer, Xilinx
Inc “ Using FPGAs as a flexible PCI Interface

Solution”.

[11] P.Assis, P.Brogueira, L.Melo, M.Pimenta,

J.c.Silva, J.Varela LIP-Lisbon, Portugal(2003),

28th International Cosmic Ray Conference. “ A

PCI based data acquisition system for Ground

Array Detectors with Wireless Synchronization

Through GPS”.

[12] David Robinson, Patrick Lysaght, Gordon

McGregor and Hugh Dick “Performance

Evaluation of a Full Speed PCI Initiator and

Target Subsystem using FPGAs”.
[13] Daniel Ziener, Jurgen Teich “ Power Signature

Watermarking of IP Cores for FPGAs.

 [14] Haber .J (2003).” Using a commercial IP core in

space flight avionics. Lessons learned”.

[15] Pillem Ramesh, Venkata Aravind Bezawada, K S

N Vittal, Dr. Fazal Noorbasha (2012).” Design of

64-bit Peripheral Component Interconnect Bus at

66MHz”.

[16] Altera Master Core IP Mt64 User Guide.

 [17] On-Chip FIFO Memory Core in Volume 5:

Embedded Peripherals of the Quartus II
 [18] Memory System Design from Altera Corporation

February 2010.

[19] Stratix Device Handbook, Volume 1 July 2005.

[20] Ali Azarian, Mahmood Ahmadi (2009).

Reconfigurable Computing Architecture. 978-1-

4244-4520-2/09 2009 IEEE.

AUTHORS PROFILE

G.Prasad (M-IEEE, FIETE) received M.Tech degree

in Electronics from JNTU Hyderabad in 1995, MBA

from IGNOU, New Delhi 2000. He is presently working

as Scientist “SF” at National Remote Sensing Centre,

ISRO, Hyderabad. His nature of work includes design

and development of satellite data acquisition systems,

high speed communication between different data
acquisition sites through satellite networking. His

research interests include VLSI designs, embedded

system and realizing systems on programmable chips.

 Current Trends in Technology and Sciences
ISSN: 2279- 0535. Volume: 3, Issue: 5 (Aug-Sept. 2014)

Copyright © 2014 CTTS.IN, All right reserved

364

N.Vasantha (M-IEEE, LM-CSI,IETE,ISTE, M VSI)

received the B.E. degree from College of Engineering,

Guindy, Madras, in 1977, the M.Tech. degree from

JNTU, Hyderabad, AndhraPradesh, in 1986, the Ph.D.

degree in Electronics & Communication Engineering

from the Osmania University, Hyderabad, AP, in

2008.She is currently working as Professor & Head,

Department of Information Technology, Vasavi College

of Engineering, Hyderabad, AP. She is the recipient of

the prestigious IETE-Prof. K.Sreenivasan’s Memorial
Award(2010).

