
 Current Trends in Technology and Science  
ISSN: 2279-0535. Volume: 3, Issue: 3 

  

Copyright © 2014 CTTS.IN, All right reserved 

134 

A Mathematical Modeling of Object Oriented Programming 

Language : a case study on Java programming language 
Manoj Kumar Srivastav*,  Dr.Asoke Nath 

Designation : Student * ,Organization :  Indira Gandhi National Open University*, 

Email ID* : mksrivastav2011@rediffmail.com, 

Designation : Associate Professor, Organization : Department of Computer Science, St. Xavier‟s College 

(Autonomous), Kolkata, India Email ID : asokejoy1@gmail.com 

 

Abstract - Srivastav et al already developed method to 

describe procedural language using mathematical 

model. As a case study the authors taken C-language 

as the procedural language. Using simple concept the 

authors tried to develop some unified mathematical 

model to explain procedural language. In the present 

work the authors made an attempt to describe Object 

Oriented language using  simple mathematical model. 

The class, object defined using simple concept of 

optimality test  of decision function. The inheritance 

also describe in terms of set concept. 

 

Keywords - [class, object, mathematical modeling,  

object oriented language, Procedural language]. 

 

1. INTRODUCTION 
 Any mathematical problem depends on the process of its 

computation. It is mainly depends on the number of steps 

taken to solve a problem and the time required to solve a 

problem.  A mathematical problem can be solved using 

various methods/algorithms but we want to find a best 

possible solution out of all those solutions. One can claim 

that a   problem can have an optimal solution if it is 

giving an optimal value. The optimal solution may be 

obtained if the number of steps to solve a problem is 

optimal and the time taken to solve a problem  will be 

minimum. Now optimal solution and  feasible solution 

can be defined in the context of any Object oriented 

programming language as follows: 

(i) Optimal solution: values of the decision variable 

which satisfied the condition in lowest effort/cost. 

(ii) Feasible  solution: all possible  solutions that include 

exception handling such as divide by zero, 

exceeding array Index upper bound ,format error , 

data type error etc.  These type of exceptional 

handling generally not possible in procedural 

language such as in C-language. 

All the programming language follows the time and 

space complexity of a program. The following cases can 

occur during the running of a program: 

 

Table-1:  Space and time requirement 

Maximum space Maximum time 

Minimum space Minimum time 

Minimum space Maximum time 

Maximum space Minimum time 

Optimal space  Optimal time 

The basic objective of any computer program is to get 

optimal solution of the given problem. The same problem 

can be solved in  different ways even though  the output 

of the program may exactly be the same. The same 

problem can be solved using different languages also. So 

therefore, the main point to be noted here is to get the 

solution of a problem in minimum time and to solve 

many problems in some stipulated time to make the 

solution optimal. 

1.1 Introduction to Procedural language: 

In procedural language a program comprises of several 

instructions. A program creates a set of instructions and 

the computer carries them out. So, a procedural language 

is divided into functions and each function has clearly 

defined interface to other  function in the program. The 

idea of breaking a program into functions can be further 

extended by grouping a number of functions together into 

a larger entity called a module which is a group of 

components. Dividing a program into functions and 

modules is termed as structured programming.  If the size 

of the program grows even larger and more complex then 

procedural language may produce of the following  type 

of problems. 

(a) Reuse of same code is restricted. 

(b) Unrelated functions and data provide a poor model 

of programming.  

 

2. RELATION AMONG TIME, COST AND 

AREA OF A RELATED PROBLEM  
Relation between time, cost and coverage of a related 

problem in programming language: 

Let  T =total time for computation of a problem 

A=total coverage area of the related problem 

Ce  =total expenditure cost to prepare a problem 

Cv  = total valuation cost  a problem after preparing it. 

2.1Expenditure cost on solving a problem in a 

programming language follows the following rule: 

2.1.1Note:  The relationship between Procedural 

language and Object Oriented language can be further 

explored as follows:  

 

Procedural 

Language 

Object –Oriented 

Language 

Remarks 

Ce  T1 Ce  T2 

with respect to 

procedural 

language 

(i)when the total 

coverage area of a 

problem is constant. 

(ii) T1>=T2 where 



 Current Trends in Technology and Science  
ISSN: 2279-0535. Volume: 3, Issue: 3 

  

Copyright © 2014 CTTS.IN, All right reserved 

135 

T1, T2 corresponds 

to computation time 

taken in Procedural 

and Object oriented 

programming 

language  

respectively. 

Ce  A1 Ce  A2 

With respect to  

(i)when the total 

computation time of 

a problem is 

constant 

(ii) A1 >=A2 where 

A1,A2 corresponds 

to coverage area 

taken in Procedural 

and Object oriented 

programming 

language 

respectively.   

Ce  

T1*A1 

Hence, 

Ce 

=m*T1*A1 

Ce (T2* A2) 

Hence 

Ce=k*(T2*A2) 

(i) When both time 

and area vary. 

(ii) Here, m and k 

are variation 

constant. 

 

Conculsion: Expenditure cost in the procedural language 

is >= Object oriented programming language. 

2.2Valuation cost of solved   problem  follows the 

following rule 

Procedural 

Language 

Object –

Oriented 

Language 

Remarks 

Cv  1/T1 Cv  T2 
(i)when the total 

coverage area 

A1,A2  of a 

procedural 

language and object 

oriented language 

respectively. 

(ii) T1,T2 

corresponds to 

valuation time of 

program developed 

using procedural 

language and object 

oriented language 

respectively.  

Cv  1/A1 Cv  A2 
(i)when the total 

valuation time T1, 

T2  remains 

constant in 

procedural 

language and object 

oriented language 

respectively. 

(ii) A1,A2 

corresponds to total 

coverage area  of 

procedural 

language and object 

oriented language 

respectively. 

Cv  1/(T1*A1) 

Hence, 

Cv =p/(T1*A1) 

Cv   

(T2*A2) 

Hence 

Cv=r*(T2*

A2) 

(i)When both time 

and area vary. 

(ii)Here, p and r are 

variation constant. 

 

2.3.Comparision of valuation cost  in the programming 

language with the symbol stated above: 

Let T1=T2=T, A1=A2=A 

 

Procedural Language Object Oriented 

Programming 

Cv=p/(T*A) Cv=r*(T*A) 

 

 Conclusion: From the above table it is clear  that  

valuation cost in procedural language is less than equal to 

valuation cost in object Oriented Language. 

Optimality Test: Let Ce1 represents Expenditure cost in 

Procedural Language and Ce2 represents Expenditure cost 

in Object Oriented Language. 

Let Cv1 rep represents valuation  cost in Procedural 

Language and Cv2 represents valuation cost in Object 

Oriented Language. 

Since, Ce1>=Ce2  which implies that       -Ce1<=-Ce2 

 And Cv1<=Cv2  

Therefore ( Cv1-Ce1 )<= (Cv2-Ce2  ) 

Hence, we can conclude thatObject Oriented 

Programming is giving more profit than procedural 

language. 

 

2.4 Conculsion: We may conclude that we can get an 

optimal cost  from  object Oriented programming if the 

problem becomes larger and better cost in procedural 

language if the problem is smaller with small time of 

computation. 

 

3. MATHEMATICAL DESCRIPTION OF OBJECT 

ORIENTED PROGRAMMING LANGUAGE 
Object-Oriented programming language is based on the 

following properties: 

(i) Class and Object 

(ii)Data Abstraction and Encapsulation 

(iii)Inheritance 

(iv)Polymorphism 

Class is a collection of objects of similar type.  

 



 Current Trends in Technology and Science  
ISSN: 2279-0535. Volume: 3, Issue: 3 

  

Copyright © 2014 CTTS.IN, All right reserved 

136 

3.1 Class concept in Java Programming Explain with 

real life Example: 

Consider Person as a class .Now we can have some 

properties associated with this class Person such as  

1.Attributes of Person: 

(i) Name of Person 

(ii) Gender 

(iii)Skin color 

(iv) Hair color etc. 

Now these are general properties which form the 

template of the class Person,and above properties are 

called as attributes of the class. 

Now Person class may have some functionality such as 

1.Talking 

2.Walking 

3.Eating 

 Thus in short class have 

1.Class Name 

2.Properties or Attributes 

3.Common function 

Now we  are going to create object of the class.i.e., actual 

instance of the class. Let us say that we have created 

object such as “Aayush ”,” Aditay”. Both will have the 

same attributes and functionality but have different 

attribute value: 

 

Name Of Person :----------------------------------- 

Skin color            : ---------------------------------- 

Gender                :---------------------------------- 

 

Now this is just a template, called as „class‟ and object as 

instance of the class. 

 

Name of Person  : Aayush 

Color             : white 

Gender      :Male 

Object-P1 

Name Of Person :  Aditya                       

Skin color            : White 

Gender                 : Male 

 

Object-P2 

Set: A set is well- defined collection of distinct objects of 

our perception or our thought ,to be conceived as a 

whole. 

Set of sets: we have defined a set as a collection of its 

elements. If the elements be set themselves, then we have 

a family of sets, or set of sets. For example ,the collection 

of all subsets of a non-empty set S is a set of sets. This 

set is said to be the power set of S and is denoted by 

P(S). 

Class may be defined as follows: 

In set theory and its application throughout 

mathematics, a class is collection of sets where each 

set has some common property. The members of a 

class is countable. 

So therefore,  class={ sets  : where all members have 

some common property} 

The basic form of a class in object –oriented 

programming is 

             class classname 

             { 

             parameter declaration; 

             Method declaration; 

 

Object: The members of a class is called an object. Since 

the members of a class is a set .Therefore it should 

possesses some property. Objects are  real world entity 

such as pen, chair, 

tables,etc. 

Similar comparision  between  set theory and object oriented language : 

 
 

Object-Oriented Programming is a methodology or 

paradigm to design a program using classes and 

objects. Any entity that has state and behavior is 

known as an object. For example: chair, pen, table, 

etc. It can be physical and logical. 

Collection of objects is called class. It is a logical 

entity. 

Any programming problem is analyzed in terms of 

objects and the nature of communication between 

them. An object takes up space in the memory and 

has an associated address like  structure in C. 

Thus class is a set of object and object is a set having 

some common feature. We can write the class by the 

symbol     ,  ,    ……etc and object by X,Y, Z……. 

etc. 

3.2 MEMORY SPACE :An object is in Java is 

essentially a block of memory that contains space to store 

all instance variables. i.e each object of a class contain an 

address in memory space. 

Memory space for an object={address of the instance 

variables: variables are members of class} 

Creating an object is also referred to as instantiating an 

object. Objects in Java are created using the new 



 Current Trends in Technology and Science  
ISSN: 2279-0535. Volume: 3, Issue: 3 

  

Copyright © 2014 CTTS.IN, All right reserved 

137 

operator.The new operator creates an object of the 

specified class and returns a reference to that 

object.Therefore the address of the new object is 

changed. 

 

Initial object has 

an address 

New object have 

new address 

 

Therefore we define a mapping f:(X, ) (Y, ) such that 

f(address of object)=address of new object[ Here X and Y 

are object set and are set of sets with respect to object X 

and     are set of sets with respect to object Y.Actually  

 represents classes   for domain and  represents 

class for range in the above function and  f represents 

main function. 

Progam1 : Input two numbers a, b. Calculate and print 

H.C.F of two numbers. 

import java.io.*; 

Class HCF 

{ 

int hcf(int a, int b) 

{ 

int r; 

while((r=a%b)!=0) 

{ 

a=b; 

b=r; 

} 

return b; 

} 

} 

class q1 

{ 

public  static void main(String args[])throws IO 

Exception 

{  

int a, b,h; 

{ 

Buffered Reader br= new Buffered Reader(new Input 

Stream                                                                                                                          

Reader(System.in)); 

System.out.print(“Enter ist number=”); 

a=Integer.parseInt(br.readLine()); 

System.out.print(“Enter 2nd number=”); 

b=Integer.parseInt(br.readLine()); 

HCF H=new HCF(); 

h=H.hcf(a,b); 

System.out.println(“\na=”+a+b”=”+b+” HCF=”+h); 

} 

} 

Let explain the above program:- 

 

 

 

 

 

 

             Domain             Range 

object Class Object Class 

An object is a 

software 

bundle that 

encapsulates  

variables and  

methods 

operating   on 

those 

variables. 

So in domain 

part here 

hcf(int a,int b) 

is taken as 

method 

function and a, 

b ,r are 

variables.Ther

fore there is 

some address 

for the object 

variable. 

HCF  The name of 

object is H. 

The following 

steps are 

taken in  the 

range set:- (i) 

Declaring an 

object 

(ii)instantiatin

g an 

object/initializ

ing an object. 

So, there is 

new address 

for the new 

object. 

Q1 

 

Program2 :-Write a program to input an integer and 

display whether it is even or odd. 

import java.io.*; 

Class q2 

{ 

public static void main(string args[]) throws IO 

Exception 

{ 

int n; 

BufferedReader br=new BufferedReader (new 

InputStreamReader(System.in)); 

System.out.print(“\n Enter any integer=”); 

n=Integer.parseInt(br.readLine()); 

if((n%2)==0) 

System.Out.println(n+”is even”); 

else 

System.Out.println(n+”is odd”); 

} 

} 

Explaination :-The mapping defined in the above 

program is in the following way: f :(X, )  (X, )  

i.e we are taking f as  an identity mapping. 

 

Program 3:  Write a program by creating constructor 

to show that  each object has its own copy of the 

instance variables of its class. 

class Student 

{ 

int roll_numb; 

int age; 

void display() 

{ 

System.out.print(roll_numb); 

System.out.println(age); 

} 

Student(int Rn, int ag) 

{ 



 Current Trends in Technology and Science  
ISSN: 2279-0535. Volume: 3, Issue: 3 

  

Copyright © 2014 CTTS.IN, All right reserved 

138 

roll_numb=Rn; 

age =ag; 

} 

public static void main(String arg[]) 

{ 

Student  shivam=new Student(1100,4); 

Student subham=new Student(1105,2); 

shivam.display(); 

subham.display(); 

} 

} 

Output 

1100 4  

1105 2 

Explaination : 
                   Domain                    Range 

Object Class Object Class 

An object is a 

software bundle 

that encapsulates  

variables and  

methods operating   
on those variables. 

So in domain part 

here void display() 

and student (int 

Rn, int ag)  are 

taken as method 

function and 

roll_numb, 

age,Rn,ag as 

variables.Therefore 

there is some 

address for the 

variables of the  

given class/object.. 

Student Shivam 

Shubham 

.Each object has 

its own copy of 

the instance 

variables of its 
class. 

Therefore  there 

is new address 

for the objects 

Shivam,Shubham 

Student 

Note:It is important to understand that each object has its 

own copy of the instance variables of its class.This 

means that any changes to the variables of one object 

have no effect on the variables of another. It is also 

possible to create two or more references to the same 

object. 

3.3 INHERITANCE:  When one object acquires all the 

properties and behaviors of parent object, i.e. known as 

inheritance. It provide code reusability. It is used to 

achieve runtime polymorphism. Inheritance aids in the 

reuse of code.A class can inherit the features of another 

class and add its modification. The parent class is known 

as the super class and the newly created child class is 

known as the subclass.A subclass inherits all the 

properties and methods of the super class, and can have 

additional attributes and methods.              . 

Collection of a class is an object. All the object of a class  

have unique address and its value is a real number. Since 

the number of object in a class is finite. Therefore we can 

prepared a set  S having the collection of finite number of 

address . 

Hence S={address of object : object is a member of a 

class} 

Now Class ={collection of object which share some 

common feature} 

    Let =class={set of objects sharing some common 

property say p1} 

                     ={object :each object  has common property 

say p1} 

     Let =class={set of objects sharing some common 

property say p2} 

                         ={object :each object  has common 

property say p2 which includes property p1 also} 

i.e      =  {some extra property than the member of   

} 

i.e.child class/subclass=parent class/superclass +some 

extra property 

Therefore, We can say that class   is inheritance of class 

. 

If we think the above thing in the sense of memory view 

for the class  we have 

= S={address of object : object is a member of a class} 

       ={a1,a2,a3,……………an: ai R,set of real 

numbers} 

Since,    =  {some extra property than the member of 

 } 

 

    = {a1,a2,a3,……………an: ai  R,set of real numbers} 

 {b1,b2,b3,………,bn for extra member of object 

:bi R, set of real number} 

={a1,a2,a3,………an,b1,b2,b3………..bn} 

This property follows by the class is known as 

inheritance property. 

Single level inheritance: 

   =   {some extra property than the member of  }  

Multilevel inheritance: 

  =    {some extra property than the member of   } . 

Hierarchical inheritance: 

   =    {some extra propertyp1 than the member of  }  

   =    {some extra propertyp2 than the member of  } 

   =   {some extra property pn than the member of  

}  

Multiple inheritance: 

   = 1 {some extra property than the member of 1 }  

   = 2 {some extra property than the member of 2 }  

But this type of case will not follow directly because 

logically here left hand side is same .So the right hand 

side should be identical 

Note :Java does not support multiple inheritance amongst 

classes. It can still be achieved with the help of interface.. 

Program: //Write a program to show inheritance in a 

class 

        import java.io.*; 

 

        interface Sum 

        { 

        static final int x=100; 

         int sum(int n); 

         void display(int s); 

        } 



 Current Trends in Technology and Science  
ISSN: 2279-0535. Volume: 3, Issue: 3 

  

Copyright © 2014 CTTS.IN, All right reserved 

139 

 

        interface Product 

        { 

        final static float pi=3.1415926F; 

        int product(int n); 

        } 

 

        class SUMPRODUCT implements Sum,Product 

        { 

        int i; 

                public int sum(int n) 

                { 

                 int s; 

                s=0; 

                for(i=1;i<=n;i++) 

                s+=i; 

                return s; 

                } 

                public int product(int n) 

                { 

                int p; 

                p=1; 

                for(i=1;i<=n;i++) 

                p*=i; 

                return p; 

                } 

                public void display(int s) 

                { 

                System.out.print(s); 

                } 

         } 

 

          class SUM1 extends SUMPRODUCT 

          { 

                int sum_odd(int n) 

                { 

                int s,i; 

                int x=999; 

                float pi=1.234F; 

                s=0; 

                for(i=1;i<=n;i=i+2) 

                s+=i; 

                System.out.print("x="+x); 

                System.out.print("\nValue of Pi="+pi); 

                return s; 

                } 

          } 

          class interface1 

          { 

                public static void main(String args[])throws  

IOException 

                { 

 BufferedReader br=new BufferedReader(new 

InputStreamReader(System.in)); 

                int n,s,p,sodd; 

                System.out.print("\nEnter n:"); 

                n=Integer.parseInt(br.readLine()); 

                SUM1 SP=new SUM1(); 

                s=SP.sum(n); 

                p=SP.product(n); 

                sodd=SP.sum_odd(n); 

                System.out.print("\nSum="); 

                SP.display(s); 

                System.out.print("\nProduct="); 

                SP.display(p); 

                System.out.print("\nSum od odd numbers="); 

                SP.display(sodd); 

 

    } 

          } 

 

 

 

class SUMPRODUCT 

implements Sum,Product 

         

Mutiple inheritance 

class SUM1 extends 

SUMPRODUCT 

          

Single level inheritance 

 

Method Overriding: {f: function f override from the 

superclass to subclass with same name and type 

signature} 

Example: 

class A 

{ 

int i=0; 

void dooverride(int k) 

{ 

i=k; 

} 

}                                    //subclass definition starts here 

 class B extends A 

{                               //Method Overriding 

 void doOverride(int k) 

{ 

i=2*k; 

System.out.println(“The value of i is :”+i); 

} 

public static void main(String args[]) 

{ 

B b=new B();   //Create an instance of classB 

b.dooverride(12);   //class B  dooverride() will be called 

} 

} 

Hence we can get optimal solution of a problem by 

taking optimal time by making an inheritance on a class. 

3.4 ENCAPSULATION  
Definition: the ability of an object to hide its data and 

methods from the rest of the world - one of the 

fundamental principles of OOP.  Because objects 

encapsulate data and implementation, the user of an 

object can view the object as a black box that provides 

services. Instance variables and methods can be added, 

deleted, or changed, but as long as the services provided 

by the object remain the same, code that uses the object 

can continue to use it without being rewritten. 

3.5 ABSTRACTION Abstraction refers to the act of 

representing essential features without including the 

background details or explanations . 



 Current Trends in Technology and Science  
ISSN: 2279-0535. Volume: 3, Issue: 3 

  

Copyright © 2014 CTTS.IN, All right reserved 

140 

Classes use the concept of abstraction and are defined as 

a list of abstract attributes. 
 

Hence we can get the optimal solution of a problem from 

a without source knowledge of an object. 

  

3.6 POLYMORPHISM: When one task is  performed by 

different ways i.e.known as polymorphism. 

Polymorphism is the ability of an object to take on many 

forms. In programming languages polymorphism is the 

capability of an action or method to do different things 

based on the object that it is acting upon. This is the third 

basic principle of object oriented programming. The 

three types of polymorphism are: ad-hoc (overloading 

and overriding), parametric (generics) and dynamic 

method binding. 

  

3.6.1 Method Overloading: Method Overloading is one 

way of achieving polymorphism in Java. Each method in 

a class is uniquely identified by its name and parameter 

list. What it means is that we can have two or more 

methods with the same name, but each with different 

parameter list. This is a powerful feature of the language 

called method overloading. Overloading allows us to 

perform the same action on different types of inputs. In  

Java whenever a method is being called, first the name of 

the method is matched and then , the number and types of 

arguments passed to the method are matched.    In 

method overloading, two methods can have the same 

name but different signature, i.e. different numbers or 

type of parameters. 

Advantages: The overloading concept is advantageous 

where similar activities are to be performed but with 

different input parameters 

Program: 

class overloadDemo 

{ 

void max(float a,float b) 

{ 

System.out.println(“max method with float argument 

invoked”); 

If(a>b) 

System.out.println(a+”is greater”); 

else 

System.out.println(b+”is greater”); 

} 

void max(double a,double b) 

{ 

System.out.println(“max method with doublet argument 

invoked”); 

If(a>b) 

System.out.println(a+”is greater”); 

else 

System.out.println(b+”is greater”); 

} 

void max(long a,long b) 

{ 

System.out.println(“max method with  long argument 

invoked”); 

If(a>b) 

System.out.println(a+”is greater”); 

else 

System.out.println(b+”is greater”); 

} 

public static void main(String args[]) 

{ 

Over loadDemo O= new Over loadDemo(); 

O.max(23L,12L); 

O.max(2,3); 

O.max(54.0,35f); 

O.max(43f,35f); 

} 

} 

Output: 

max method with long argument invoked 

23 is greater 

max method with long argument invoked 

3 is greater 

max method with double argument invoked 

54.0 is greater 

max method with float argument invoked 

43.0 is greater 

 ThusOverloaded methods are methods with the same 

name signature but either a different number of 

parameters or different types in the parameter list. 

In mathematical way overloading can be defined  in the 

following way :- 

S={collection of function:function have either a different 

number of parameters or different types in the parameter         

list}.   

   ={f  R: f  have either a different number of parameters 

or different types in the parameter list} 

   ={f  R :  same function f can be defined on any 

dimension  in the Eucliedian space} 

 R is set of real number. 

Overridden methods are methods that are redefined 

within an inherited or subclass. They have the same 

signature and the subclass definition is used. 

Parametrics are generic typing procedures. 

Dynamic (or late) method binding is the ability of a 

program to resolve references to subclass methods at 

runtime. For example assume that three subclasses 

(Cow, Dog and Snake) have been created based on the 

Animal abstract class, each having their own speak() 

method. Although each method reference is to an Animal 

(but no animal objects exist), the program is will resolve 

the correct method reference at runtime. 

public class AnimalReference 

{ 

  public static void main(String args[]) 

  Animal ref                 // set up var for an Animal 

 

Cow aCow = new Cow("Bossy"); // makes specific 

objects 

  Dog aDog = new Dog("Rover"); 

  Snake aSnake = new Snake("Ernie"); 

  // now reference each as an Animal 

  ref = aCow; ref.speak(); 

  ref = aDog; ref.speak(); 

  ref = aSnake; ref.speak(); 

} 

http://home.cogeco.ca/~ve3ll/jatutor5.htm#inh
http://home.cogeco.ca/~ve3ll/jatutor8.htm#pa


 Current Trends in Technology and Science  
ISSN: 2279-0535. Volume: 3, Issue: 3 

  

Copyright © 2014 CTTS.IN, All right reserved 

141 

4. SUMMARY OF OBJECT-ORIENTED 

CONCEPTS 
I. Everything is an object. 

II. Computation is performed by objects 

communicating with each other, requesting that 

other objects perform actions.  Objects communicate 

by sending and receiving messages.  A message is a 

request for action, bundled with whatever arguments 

may be necessary to complete the tasks. 

III. Each object has its own memory, which consists of 

other objects. 

IV. Every object is an instance of a class.  A class 

simply represents a grouping of similar objects, such 

as Integers or lists. 

V. The class is the repository for behaviour associated 

with an object.  That is, that all objects that are 

instances of the same class can perform the same 

actions. 

VI. Classes are organized into a singly rooted tree 

structure, called the inheritance hierarchy.  Memory 

and behaviour associated with instances of a class 

are automatically available to any class associated 

with a descendant in this tree structure 

VII. We can get optimal solution for same type related 

problem  

 

REFERENCES 

[1]  Mathematical modeling of various statements of 

C-type Language, Manoj Kumar Srivastav , Asoke 

Nath,  International Journal of Advanced 

Computer  

[2] Research(IJACR), Vol-3,Number-1, Issue-13, 

Page:79-87 Dec(2013).  

[2]Mathematical Description of variables, 

pointers, structures, Unions used in C-type 

language, Manoj Kumar Srivastava, Asoke Nath, 

Joiurnal of Global Research Computer Science, 

Vol-5, No-2, Page:24-29, Feb(2014) 

[3]  E Balaguruswamy- Programming with Java-

TataMcGrawHill EductionP rivate Limited.,2011 

[4]  Sachin Malhotra, Sourabh Choudhary- 

Programming in Java- OXFORD University 

Press,2012 

[5]  Herbert Schildt, Java 
TM

 2: The Complete 

Reference, TataMcGraw-Hill Publishing 

Company Limited,2001 

 [6] Satish Jain,Vineeta Pillai,Kratika, Introduction to 

Object Oriented Programming through Java,BPB 

Publications,2011 

[7]  S.K.Mapa, Real Analysis , Asoke Prakasan 1998 

[8]  S.K.Mapa Higher Algebra, -Sarat Book 

Distribution,2000 

 Website reference: 

[9] www.c4learn.com 

[10] www.ctp.bilkent.edu.tr 

 

 

 

 

AUTHOR’S PROFILE 

 

Dr. Asoke Nath is an Associate 

Professor in the Department 

Department of Computer Science. 

Presently he is busy with 

Cryptography and Network 

Security Steganography, Green 

Computing, e-learning, 

Mathematical Formulation of 

computer Language. 

  

 

Mr. Manoj Kumar Srivastav 

has been Post graduate in Pure 

Mathematics from University of   

Calcutta in year 2004 with 

Special paper in Advanced  

functional analysis  and category  

theory, universal algebra and  

lattice theory. At present he is 

doing     MCA  from IGNOU and 

he is working as a postgraduate 

teacher in Mathematics in an 

esteemed institution. 

 

http://www.ctp.bilkent.edu.tr/

