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Abstract

As the volume and complexity of data continue to surge,
the need for efficient big data processing and clustering
methodologies becomes increasingly critical. This research
paper presents a comprehensive exploration of the utiliza-
tion of AsterixDB, an open-source, scalable, and highly ex-
tensible big data management system, to achieve efficient
data processing and clustering. The study delves into the
unique features and capabilities of AsterixDB, examining
its ability to handle large-scale datasets with a focus on
scalability, performance, and adaptability. This research
introduces an innovative software stack to construct scal-
able Big Data systems. The focus is specifically on two key
components within this stack. First, Hyracks stands out
as a novel partitioned-parallel runtime layer, offering an
efficient and versatile model for executing data-processing
tasks across a cluster of commodity machines. Second, Al-
gebricks is a compiler framework crucial in constructing
compilers for high-level declarative languages tailored for
parallel processing, all built on top of the Hyracks infras-
tructure.

Keywords: Big Data, MapReduce, Clustering, Aster-
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1 Introduction

Initially, programmers used the MapReduce system to im-
plement tools to quickly comb through very large amounts
of data stored on clusters of commodity machines. Over
time, it was clear that writing these tools in imperative
languages, for analysis, was not the best use of program-
mers’ time. To further improve programmer productiv-
ity, higher-level declarative languages were implemented
(Sawzall [1] and Tenzing [2], at Google, and Hive [3], at
Facebook). The runtime layer used to process queries by
these systems was still the MapReduce platform. While
MapReduce was a simple model for programmers writing
simple tools, we believed that it was the wrong layer for
query language compilers to target, as their runtime layer.
Sticking to the MapReduce abstraction forced queries to
be evaluated as a sequence of MapReduce jobs with inter-

mediate data materialized in a distributed filesystem, thus
using a whole lot of unneeded resources. Several decades of
database research has shown that pipelined architectures
for executing queries consume fewer system resources, mak-
ing better use of available hardware. One other problem
with the MapReduce model was the reliance on unary op-
erators for implementing Map and Reduce functions.

This limitation of the model forces the need to express
binary operations (such as joins) in an unnatural convo-
luted fashion. For example, Hive implements join over
the MapReduce platform by expressing the operation as
a grouping of the tagged union of the two relations be-
ing joined. Another type of inefficiency introduced by
the MapReduce platform has to do with the limited types
of query processing algorithms that can be implemented
within the framework, owing to the strict map-followed-
by-sort-followed-by-reduce contract. For example, aggre-
gation in MapReduce is implemented using a sort-based
strategy because sorting is built into the system. A tradi-
tional parallel relational database system might have cho-
sen a hash-based strategy to perform aggregation. This
choice would require that the platform provide data redis-
tribution primitives that offer more control. More details
of these inefficiencies are described in Chapter 4. Based on
these observations, Hyracks is designed and implemented,
a high-performance parallel dataflow runtime layer.

2 Related Work

Various tools and techniques have been proposed by the
researchers to enhance the performance of the big data
processing and clustering.

Peng et al. [4] suggested a clustering technique for in-
trusion detection systems called Mini Batch Kmeans with
PCA (PMBKM). Both the 10% dataset and the entire
dataset, IDS classic dataset KDDCUP99, are tested. Prior
to using the PCA approach to lower the dimension and
increase the clustering performance, they preprocessed the
provided dataset. Furthermore, the transformed dataset
is clustered using the Mini Batch Kmeans algorithm. In
contrast to Kmeans (KM), Kmeans with PCA (PKM), and
Mini Batch Kmeans (MBKM), the experimental findings
demonstrated the efficacy and efficiency of their suggested
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PMBKM. The most important application for PMBKM is
as an intrusion detection system in big data environments.

Ma et al. [5] proposed an interdisciplinary architec-
ture aimed at fields such as big data, energy, manufactur-
ing, clustering, and correlation analysis. This architecture
serves as a valuable resource for both industrial production
and academic research, offering both practical and theoret-
ical insights. While clustering and correlation analysis are
widely utilized in energy-intensive manufacturing indus-
tries (EIMIs), their combination in studies remains limited.
Additionally, the dynamic uncertainty and complexity of
continuous production processes constrain data mining and
analysis efforts, making it challenging to extract insights
from multi-source heterogeneous data. Incorporating ad-
vanced technologies into multi-source heterogeneous data
mining requires significant infrastructure support. Hence,
there’s a need to develop a simple yet efficient approach
to uncover the underlying connections between various en-
ergy and resource variables. To address this, they proposed
a big data-driven correlation analysis framework based on
clustering analysis.

The traditional algorithm for clustering efficient dis-
tributed databases often incurs long processing times and
achieves low accuracy. In response to these challenges,
Liantian Li [6] proposed a novel algorithm tailored for clus-
tering efficient distributed databases in big data processing
scenarios. This algorithm involves computing the eigenval-
ues of the database and associating the efficient distributed
database with similar characteristics. Additionally, it em-
ploys a cross-correlation matrix to ensure consistency in
cluster labeling. To enhance the performance of the K-
means algorithm, the algorithm takes the database to be
clustered as input, outputs k clustering centers, and par-
titions the data into clustering groups. By mapping the
database to clustering centers, the algorithm effectively
clusters low-dimensional big data. Experimental findings
demonstrate that the proposed algorithm can significantly
reduce both the runtime and mean square error of data
clustering while improving the efficiency and accuracy of
the clustering process.

Paulraj et al. [7] introduced the Rank-Revealing RRQR-
SDM technique, which presents several advantages com-
pared to existing methods. Firstly, by leveraging the in-
herent low-rank structure, it decreases the computational
complexity associated with large datasets. This approach
not only uncovers the rank of the input matrix but also fa-
cilitates dimensionality reduction and effective data com-
pression. Secondly, through Schur decomposition, it en-
hances data interpretability by distinguishing between rel-
evant and irrelevant components clearly. This characteris-
tic renders the RRQR-SDM method especially suitable for
tasks such as data mining and clustering, where identifying
significant features is crucial. Extensive experiments con-
ducted on diverse big data sets validate the superiority of
the proposed method in terms of computational efficiency

and clustering accuracy over current techniques.
Liu et al. [8] proposed Dynamic Cluster Scheduling Al-

gorithm(DCSA) for parallel optimization of big data tasks,
leveraging data correlation. Initially, a dynamic data queue
is generated based on the server’s request database, con-
sidering factors such as data item priority and size for data
clustering association. Introducing weights ensures equal-
ization of dynamic data items to facilitate multi-channel
optimal scheduling. Subsequently, based on data item rel-
evance, a mechanism for optimized data placement ag-
gregates data within the same frame. Following place-
ment, dynamic data is uniformly scheduled to minimize
migration costs, considering local data item characteristics
as constraints. Through iterative targeting, the optimal
scheduling scheme is refined, ultimately achieving multi-
channel optimal scheduling. Experimental results demon-
strate that the proposed method effectively achieves opti-
mal scheduling of dynamic data.

Tian et al. [9] proposed an effective ensemble hierar-
chical clustering algorithm, leveraging a MapReduce-based
clusters clustering technique and a novel similarity crite-
rion. Ensemble clustering involves amalgamating outcomes
from diverse single clustering methods, typically yielding
superior results due to the amalgamation of multiple learn-
ing approaches. Consequently, combining hierarchical clus-
tering methods is anticipated to enhance clustering qual-
ity further. Additionally, MapReduce, a model for big
data application implementation, is employed to execute
hierarchical clustering methods. Simultaneously, sample
similarity is assessed using an innovative similarity crite-
rion. The proposed methodology unfolds in three sequen-
tial steps. Initially, data undergo clustering via several
individual hierarchical clustering methods. Subsequently,
hyper-clusters are derived through application of the clus-
ters clustering technique in the second step. Finally, in the
third step, final clusters are formed by assigning samples
to hyper-clusters. This process concludes the formation
of final clusters. Simulation conducted on multiple real-
world datasets demonstrates superior performance of the
proposed approach compared to algorithms such as CHC
and RCESCC.

Sharma and Patil [10] used a hybrid big data analyt-
ical model which integrates Support Vector Regression
(SVR) with Auto-Regressive Integrated Mov-ing Average
(ARIMA) is proposed to predict product sales and rev-
enues. The simulation results show that the proposed
model presents lower relative error rate and higher accu-
racy that can be utilized for business planning and strate-
gies. They also applied the extreme gradient boosting (XG-
Boost) [11] based model to forecast sales growth of online
products, specifically books and magazines, from massive
datasets present in online shopping. PySpark, as the best
suitable and compatible framework, is used for data anal-
ysis. The result shows that the proposed model has higher
forecasting accuracy with a minimum error rate than other
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models. A comparative visualization and conclusion are
presented in terms of the proposed system’s prediction ac-
curacy, error rate, and efficiency.

3 Proposed Methodology

In the context of the AsterixDB project, Hyracks and Al-
gebricks were developed. AsterixDB is a scalable Big-Data
Management system built from the ground up to ingest,
manage, index, query, and analyze mass quantities semi-
structured data [12]. As a implementation, this research
describes how Hyracks and Algebricks form the underpin-
nings of this Big-Data Management system. It is begin by
first providing an overview of AsterixDB’s data definition
capabilities and its data manipulation capabilities. Alge-
bricks and Hyracks come together to form the bottom half
of AsterixDB.

3.1 Data Definition

In this section we describe AsterixDB’s data definition fea-
tures. We illustrate them by example through a scenario
based on information about users and their messages from
a hypothetical social network called Mugshot.com.

3.1.1 Dataverses, Datatypes, and Datasets

The top-level organizing concept in AsterixDB is the Data-
verse. A Dataverse, short for ”data universe”, is a place
(akin to a database in an RDBMS) within which one can
create and manage the types, Datasets, functions, and
other artifacts for a given application. Initially, an Aster-
ixDB instance contains no data other than the system cat-
alogs, which live in a system-defined Dataverse (the Meta-
data Dataverse).

In this chapter, we describe the design and implemen-
tation of the Algebricks layer. As we started to build the
AQL compiler for the AsterixDB platform, we realized that
having a generic compiler framework to compile declara-
tive languages to evaluate using a parallel dataflow plat-
form like Hyracks would be useful to the community at
large. Based on prior research in the area of extensible
systems and query algebras, we designed the Algebricks li-
brary to help query language implementors avoid spending
time building a lot of boiler plate code that goes into im-
plementing a full-fledged compiler. Algebricks, along with
Hyracks, enables query language implementors to have a
complete parallel query compiler in a matter of days.

3.2 The Algebricks Framework

Algebricks serves as an algebraic layer dedicated to opti-
mization with parallel query processing. Its versatility in
accommodating different data-intensive query languages is
a result of its deliberate design choice to remain agnostic

regarding the data model it processes. In a logical sense,
operators within Algebricks function on tuples collections
that contain data values. Algebricks purposely refrains
from specifying the types and formats of the data values
encapsulated within a tuple. This allows language imple-
mentors the freedom to define any value types as abstract
data types.

For instance, when a language developer employs Alge-
bricks to implement a SQL compiler, they can establish
SQL’s scalar data types as the data model. In this sce-
nario, the developer is responsible for defining SQL expres-
sions’ type computation, implementing runtime functions
like scalar and aggregate functions, and managing runtime
operations such as comparison and hashing. Algebricks
accommodates this flexibility, enabling the seamless inte-
gration of diverse data models.

A noteworthy example is the integration of AQL [13]
with Algebricks, wherein AQL introduces a broader array
of data types, including various collection types and nested
types. These additional data types have been success-
fully implemented using the Algebricks API, showcasing
the adaptability and extensibility of the Algebricks toolkit.

The Algebricks framework usually contains of the follow-
ing essential components:

• A set of logical operators,
• A rewrite rule framework,
• A set of general rewrite rules,
• A set of physical operators,
• An API for metadata provisioning that exposes catalog
information to Algebricks, and,

• A mapping of physical to runtime operators and connec-
tors in Hyracks.

Compilation Flow. Figure 1 illustrates the standard
sequence of compilation steps undertaken by a query pro-
cessor constructed with Algebricks. The process begins
with the lexical analysis and parsing of an incoming query
string, leading to the construction of an abstract syntax
tree (AST). Subsequently, this AST is transformed into the
Algebricks logical plan, comprising logical operators. This
logical plan acts as an intermediate representation for the
ensuing stages of query compilation.

4 Experimental Evaluation

In this section, we demonstrate experimentally the paral-
lel efficiency of Hivesterix, AsterixDB, and VXQuery. In
addition to showing proof of their existence, these experi-
ments aim to expose the direct benefits of using Algebricks
in achieving good parallelization characteristics. We re-
port performance for a representative set of queries for each
system for different sizes of data and different numbers of
nodes, with the goal of showing the scale-up and speed-up
characteristics of each system.
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Figure 1: Flowchart of a typical Algebricks-based compiler.

4.1 Hivesterix

The experiments were conducted using following configu-
rations:

• Cluster: Hivesterix experiments worked on a 40-node
cluster with a Gigabit Ethernet switch. Each node
had a Quadcore Intel Xeon CPU E3-1230 V2 3.30GHz,
16GB of RAM, and 3TB RAID0 (3x1TB disks, linux
software RAID). We compared Hivesterix and Hive-
on-Hadoop (Hive-0.12.0). In the experiments, the
RAID0 disk on each node is used for the HDFS data
directory and the spilling workspace for query process-
ing.

• Data: For speedup experiments, we used TPC-H
250× ( 250GB). For scaleup experiments, TPC-H
250×, 500×, 750×, 1000× ( 1TB) were used for 10,
20, 30, and 40 machines respectively.

• Configuration: Eight partitions per machine.

• Queries: Three representative queries were reported
from the TPC-H benchmark, a filter and aggregate
query, a group-by query, and a join with group-by
query, shown below.

As indicated by Figures 2 and 3, all queries show good
speed-up and scale-up characteristics. All three benefit
from scanning blocks of HDFS data in parallel. In HQ1
and HQ2, filtering is parallelized and aggregation is done in
two phases, reducing the amount of data transferred across
machines. HQ3 benefits from parallelizing joins across the

cluster. We have also executed TPC-H using Hive-on-
Hadoop (Hive-0.12.0) and a comparison with Hivesterix
is shown in Figure 4. (An interesting future exercise might
include the new generation of ”SQL on Hadoop” systems.)
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Figure 2: Hivesterix cluster speed up (percentage of 10
machines).
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Figure 3: Hivesterix cluster scale up (percentage of 10 ma-
chines)
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Figure 4: Hivesterix and Hive-on-Hadoop Comparison on
TPC-H

4.2 Apache AsterixDB

The Apache AsterixDB were configured as:

• Cluster: We ran the reported experiments on a
10-node IBM x3650 cluster with a Gigabit Ethernet
switch. Each node had one Intel Xeon processor E5520
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2.26GHz with four cores, 12GB of RAM, and four
300GB, 10K RPM hard disks. On each machine 3
disks were used for data. The other disk was used
to store ‘system’s data” (transaction logs and system
logs).

• Data: We used a synthetic data generator to cre-
ate records for the collections related to these tests
(“GleambookUsers” etc.) For the speedup experi-
ments, we generated 338GB of data, loaded on 9, 18
and 27 partitions. For the scaleup experiments, we
generated 169GB, 338GB and 507GB of data for 9,
18 and 27 partitions respectively. A secondary index
was constructed on the user since field of the Gleam-
bookUsers dataset.

• Configuration: We ran three partitions on each ma-
chine. We assigned a maximum of 6GB of memory
to each node controller. The buffercache size for each
node controller was set to be 1GB.

• Queries: We executed four representative AQL
queries, as follows.
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Figure 5: AsterixDB cluster speed up (percentage of 3 ma-
chines)
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Figure 6: AsterixDB cluster scale up (percentage of 3 ma-
chines)

Figure 5 and Figure 6 depict the parallel speedup and
scaleup of the four AQL queries. AQ1 and AQ3 benefit
from the same rules in Algebricks that helped HQ1 and
HQ2 in Hivesterix. Scanning partitions and filtering is

done in parallel on the different nodes of the cluster. In
AQ3, the aggregation is performed in two phases to re-
duce network transfer. Join parallelism allows AQ4 to use
the cluster effectively. AQ2 uses an index in AsterixDB to
evaluate filters instead of scanning all the data. The index
range scan is performed in parallel on the different parti-
tions. Note that Algebricks includes facilities for utilizing
indexes for query processing, but AsterixDB is currently
the only system built on top of Algebricks that implements
indexing at the storage level. Detailed AsterixDB perfor-
mance characteristics can be found in [13].

4.3 Apache VXQuery

Apache VXQuery were configured as:

• Cluster: Experiments were run on a cluster whose
nodes have two Dual-Core AMD Opteron(tm) proces-
sor 2212 HE CPUs, 8GB of RAM, and two 1TB hard
drives.

• Data: We used NOAA’s Global Historical Clima-
tology Network (GHCN)-Daily dataset that includes
daily summaries of climate recordings (e.g., high and
low temperatures, wind speed, rainfall). The complete
XML data definition can be found on NOAA’s site
[14]. For the speed-up experiments, we used 57GB of
weather XML data partitioned over the number of ma-
chines (varied from 1 to 8) for each run. The scale-up
experiments were performed while keeping the amount
of data per machine constant at 7.2GB and varying the
number of machines from 1 to 8.

• Configuration: We ran four partitions per machine.

• Queries: We used the following three XQuery
queries:
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Figure 7: VXQuery cluster speed up (percentage of 1 ma-
chine)

Figure 7 and Figure 8 show the parallel speedup and
scaleup of Apache VXQuery. The optimizations imple-
mented in Algebricks help VQ1, VQ2, and VQ3 to achieve
good parallel performance by parallelizing scans, filters,
aggregations, and joins. More performance results for the
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Figure 8: VXQuery cluster scale up (percentage of 1 ma-
chine)

current Apache VXQuery implementation on top of Alge-
bricks can be found in [15].

Table 1: Code metrics as a proxy for the effort required to
build query compilers using Algebricks

Algebricks AsterixDB Hivesterix VXQuery

LOC 42K 40K 3.4K 12.8K
# Rules 50 61 4 29
# Logical Ops 39 2 0 0
# Physical Ops 44 6 0 0

Algebricks has served as a useful tool to build not just
the AsterixDB query compiler, but also query compilers for
HiveQL and XQuery. Table 1 shows the lines of code, the
number of rewrite rules, the number of logical operators,
and the number of physical operators that were provided
by Algebricks, and those that needed to be additionally
implemented in AsterixDB, Hivesterix, and VXQuery. Al-
gebricks provides about 50 rewrite rules, 39 logical oper-
ators, and 44 physical operators that are helpful for all
three query processors. Additionally, AsterixDB required
only 2 logical operators and 6 physical operators. These
operators were AsterixDB specific and related to accessing
indexes. The extensibility offered by Algebricks allowed
the AsterixDB platform to implement these operators and
plug them into the Algebricks framework. 61 rewrite rules
were implemented in the AsterixDB platform to deal with
rewrites specific to the Asterix data model. Hivesterix and
VXQuery did not require any additional operators. Opera-
tors available in Algebricks were sufficient to implement the
entire HiveQL and XQuery language compilers. Hivesterix
and VXQuery required 4 and 29 rewrite rules, respectively,
that were specific to the datamodel semantics of the two
systems.

5 Conclusion and Future Work

This research presented Hyracks, a high-performance par-
allel dataflow runtime layer, and Algebricks, a parallel

query compilation layer, both of which underpin the Aster-
ixDB stack. Hyracks in conjunction with Algebricks also
support quite a few other query processing systems. In ad-
dition to AsterixDB, Hivesterix and Apache VXQuery are
two other query processing engines that have been built on
top of Hyracks + Algebricks. Hyracks has also served as
a research platform for building specialized Big Data pro-
cessing systems. Hyracks has also been used to implement
a highly scalable version of the Batch Gradient Descent
Algorithm for machine learning.

In the future, Hyracks under AsterixDB stack could ben-
efit from an automatic resource management architecture,
so that jobs could be optimized using various policies with-
out the over (or under) consumption of available resources.
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